These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8203632)

  • 1. An X-ray microanalysis study of Locusta Malpighian tubule cell function using rubidium.
    Pivovarova N; Marshall SL; Anstee JH; Bowler K
    Am J Physiol; 1994 May; 266(5 Pt 2):R1551-61. PubMed ID: 8203632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An X-ray microanalytical study on the effects of ouabain and N-ethyl maleimide on the elemental concentrations in Malpighian tubule cells of Locusta.
    Pivovarova N; Anstee JH; Bowler K
    Scanning Microsc Suppl; 1994; 8():37-44; discussion 44-5. PubMed ID: 7638499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray microanalysis of Rb+ entry into cricket Malpighian tubule cells via putative K+ channels.
    Marshall AT; Clode PL
    J Exp Biol; 2009 Sep; 212(18):2977-82. PubMed ID: 19717680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous distribution of elemental contents in the larval Malpighian tubules of Drosophila hydei: X-ray microanalysis of freeze-dried cryosections.
    Wessing A; Zierold K
    Cell Tissue Res; 1993 Jun; 272(3):491-7. PubMed ID: 8339320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron probe X-ray microanalysis of epithelial cells: aspects of cryofixation.
    Zierold K; Hentschel H; Wehner F; Wessing A
    Scanning Microsc Suppl; 1994; 8():117-26; discussion 126-7. PubMed ID: 7638480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation into the effects of inhibitors of fluid production by Locusta Malpighian tubule Type I cells on their secretion and elemental composition.
    Hopkin R; Anstee JH; Bowler K
    J Insect Physiol; 2001 Apr; 47(4-5):359-367. PubMed ID: 11166300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcellular sodium transport and basolateral rubidium uptake in the isolated perfused cortical collecting duct.
    Flemmer A; Dörge A; Thurau K; Beck FX
    Pflugers Arch; 1993 Aug; 424(3-4):250-4. PubMed ID: 8414914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular Na concentration and Rb uptake in proximal convoluted tubule cells and abundance of Na/K-ATPase alpha1-subunit in NHE3-/- mice.
    Beck FX; Neuhofer W; Dörge A; Giebisch G; Wang T
    Pflugers Arch; 2003 Apr; 446(1):100-5. PubMed ID: 12690468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular storage of sodium and magnesium in Drosophila Malpighian tubules. X-ray microanalysis of native cryosections.
    Wessing A; Zierold K; Schäfer D
    Eur J Cell Biol; 1988 Oct; 47(1):1-6. PubMed ID: 3229416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Rb(+) and Br(-) as tracers for investigating ion transport by X-ray microanalysis in the Malpighian tubules of the black field cricket Teleogryllus oceanicus.
    Marshall AT; Xu W
    J Insect Physiol; 1999 Mar; 45(3):265-273. PubMed ID: 12770374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular flux of potassium and rubidium in amphibian oocytes.
    Cameron IL; Hunter KE
    Physiol Chem Phys Med NMR; 1985; 17(2):173-81. PubMed ID: 2417267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of the Golgi complex for epithelial ion transport in Drosophila Malpighian tubules, studied by electron microscopy, cytochemistry and X-ray microanalysis.
    Wessing A; Zierold K
    Eur J Cell Biol; 1996 Feb; 69(2):116-27. PubMed ID: 8907611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rubidium uptake and accumulation in peripheral myelinated internodal axons and Schwann cells.
    Lehning EJ; Gaughan CL; Eichberg J; LoPachin RM
    J Neurochem; 1997 Sep; 69(3):968-77. PubMed ID: 9282918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of bafilomycin A1 and amiloride on the apical potassium and proton gradients in Drosophila Malpighian tubules studied by X-ray microanalysis and microelectrode measurements.
    Wessing A; Bertram G; Zierold K
    J Comp Physiol B; 1993; 163(6):452-62. PubMed ID: 8300919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell rubidium uptake: a method for studying functional heterogeneity in the nephron.
    Beck FX; Dörge A; Blümner E; Giebisch G; Thurau K
    Kidney Int; 1988 Mar; 33(3):642-51. PubMed ID: 3367555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Electrone probe microanalysis of rubidium retention in myocell of rat heart during acute ischemia].
    Pogorelov AG; Pogorelova VN; Pogorelova MA
    Biofizika; 2012; 57(5):827-31. PubMed ID: 23136775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal freeze-drying of cryosections and bulk specimens for X-ray microanalysis.
    Edelmann L
    Scanning Microsc Suppl; 1994; 8():67-76; discussion 76-81. PubMed ID: 7638502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass dense vacuoles in Drosophila Malpighian tubules contain zinc, not sodium. A reinvestigation by X-ray microanalysis of cryosections.
    Zierold K; Wessing A
    Eur J Cell Biol; 1990 Dec; 53(2):222-6. PubMed ID: 2081540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium transport through the basal plasma membrane of larval malpighian tubules of Drosophila hydei studied by electron probe X-ray microanalysis.
    Wessing A; Zierold K
    Magnes Res; 2002 Mar; 15(1-2):11-6. PubMed ID: 12030418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential uptake of rubidium from extracellular space by glial cells compared to neurons in leech ganglia.
    Saubermann AJ; Castiglia CM; Foster MC
    Brain Res; 1992 Apr; 577(1):64-72. PubMed ID: 1521148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.