These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 820377)

  • 21. Initiation of protein synthesis in bacillus subtilis in the presence of trimethoprim or aminopterin.
    Arnold HH
    Biochim Biophys Acta; 1977 May; 476(1):76-87. PubMed ID: 403950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The preliminary sequence of tRNA Met F from Anacystis nidulans compared with other initiator tRNAs.
    Ecarot-Charrier B; Cedergren RJ
    FEBS Lett; 1976 Apr; 63(2):287-90. PubMed ID: 816671
    [No Abstract]   [Full Text] [Related]  

  • 23. The specificity of the chemical modification of N6-delta 2-(isopentenyl)adenosine in purified yeast tRNA Ser.
    Horváth P; Dénes G
    Biochim Biophys Acta; 1977 Jan; 474(2):188-98. PubMed ID: 318861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specific binding of tRNAMet to 23S rRNA of Escherichia coli.
    Dahlberg JE; Kintner C; Lund E
    Proc Natl Acad Sci U S A; 1978 Mar; 75(3):1071-5. PubMed ID: 349554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal melting curves of tRNAPhe from yeast lacking different numbers of nucleotides from the 3'-end.
    Beltchev B; Yaneva M; Staynov D
    Eur J Biochem; 1976 May; 64(2):507-10. PubMed ID: 776619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methylation of an adenosine in the D-loop of specific transfer RNAs from yeast by a procaryotic tRNA (adenine-1) methyltransferase.
    Raettig R; Kersten H; Weissenbach J; Dirheimer G
    Nucleic Acids Res; 1977 Jun; 4(6):1769-82. PubMed ID: 408794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleotide sequence of initiator tRNA from Bacillus subtilis.
    Yamada Y; Kuchino Y; Ishikura H
    J Biochem; 1980 May; 87(5):1261-9. PubMed ID: 6771252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of ribothymidine in mammalian tRNAPhe.
    Roe BA; Tsen HY
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3696-700. PubMed ID: 269424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence.
    Okabe N; Cramer F
    J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of yeast mitochondrial tRNAs by two-dimensional polyacrylamide gel electrophoresis: characterization of isoaccepting species and search for imported cytoplasmic tRNAs.
    Martin RP; Schneller JM; Stahl AJ; Dirheimer G
    Nucleic Acids Res; 1977 Oct; 4(10):3497-510. PubMed ID: 337238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of ribothymidine in the thermal stability of transfer RNA as monitored by proton magnetic resonance.
    Davanloo P; Sprinzl M; Watanabe K; Albani M; Kersten H
    Nucleic Acids Res; 1979 Apr; 6(4):1571-81. PubMed ID: 377228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and purification of tRNAs containing N6-(delta 2-isopentenyl) adenosine using antibodies specific for N6-(delta-isopentenyl) adenosine.
    Senapathy P; Jacob MT
    J Biol Chem; 1981 Nov; 256(22):11580-4. PubMed ID: 7028736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the reactivity of pyridoxal-5'-phosphate with yeast tRNAPhe and tRNATyr.
    Okabe N; Cramer F
    Z Naturforsch C Biosci; 1980; 35(5-6):522-5. PubMed ID: 6773259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A study of the thermal unfolding of Escherichia coli phenylalanine transfer RNA by chemical modification at elevated temperatures.
    Goddard JP; Lowdon M
    Eur J Biochem; 1978 Sep; 89(2):531-41. PubMed ID: 361393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methylation of yeast tRNAPhe by enzymes from cytoplasm, chloroplasts and mitochondria of Phaseolus vulgaris.
    Montasser Kouhsari S; Keith G; Weil JH
    Biochim Biophys Acta; 1978 Dec; 521(2):576-83. PubMed ID: 737182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An analysis of five serine transfer ribonucleic acids from Drosophila.
    White BN; Dunn R; Gillam I; Tener GM; Armstrong DJ; Skoog F; Frihart CR; Leonard NJ
    J Biol Chem; 1975 Jan; 250(2):515-21. PubMed ID: 803967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal and Mg2+ dependent behavior of pseudouridines at 39th and 55th of yeast tRNAPhe.
    Nagamatsu K; Miyazawa Y
    Nucleic Acids Symp Ser; 1983; (12):133-6. PubMed ID: 6664847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of tRNAPhe from Drosophila.
    White BN; Tener GM
    Biochim Biophys Acta; 1973 Jun; 312(2):267-75. PubMed ID: 4198761
    [No Abstract]   [Full Text] [Related]  

  • 39. Biosynthetic pathway of ribothymidine in B. subtilis and M. lysodeikticus involving different coenzymes for transfer RNA and ribosomal RNA.
    Schmidt W; Arnold HH; Kersten H
    Nucleic Acids Res; 1975 Jul; 2(7):1043-51. PubMed ID: 807911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Characterization of fluorescent derivatives of tRNA Phe by experiments in the ribosomal system].
    Bintermaĭer V; Tsakhau GG
    Mol Biol (Mosk); 1975; 9(1):63-9. PubMed ID: 768743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.