These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8204205)

  • 1. Effect of ethanol on the interaction between the macrophage and Mycobacterium avium.
    Bermudez LE
    Alcohol; 1994; 11(2):69-73. PubMed ID: 8204205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol affects release of TNF and GM-CSF and membrane expression of TNF receptors by human macrophages.
    Bermudez LE; Wu M; Martinelli J; Young LS
    Lymphokine Cytokine Res; 1991 Oct; 10(5):413-9. PubMed ID: 1662988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethanol augments intracellular survival of Mycobacterium avium complex and impairs macrophage responses to cytokines.
    Bermudez LE; Young LS
    J Infect Dis; 1991 Jun; 163(6):1286-92. PubMed ID: 2037794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response to stimulation with recombinant cytokines and synthesis of cytokines by murine intestinal macrophages infected with the Mycobacterium avium complex.
    Hsu N; Young LS; Bermudez LE
    Infect Immun; 1995 Feb; 63(2):528-33. PubMed ID: 7822018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor necrosis factor and granulocyte macrophage-colony stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates.
    Denis M
    J Leukoc Biol; 1991 Apr; 49(4):380-7. PubMed ID: 1900522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interleukin-12-stimulated natural killer cells can activate human macrophages to inhibit growth of Mycobacterium avium.
    Bermudez LE; Wu M; Young LS
    Infect Immun; 1995 Oct; 63(10):4099-104. PubMed ID: 7558325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant granulocyte-macrophage colony-stimulating factor activates human macrophages to inhibit growth or kill Mycobacterium avium complex.
    Bermudez LE; Young LS
    J Leukoc Biol; 1990 Jul; 48(1):67-73. PubMed ID: 2113563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of TNF-alpha, IL-6 and TGF-beta, and expression of receptors for TNF-alpha and IL-6, during murine Mycobacterium avium infection.
    Champsi J; Young LS; Bermudez LE
    Immunology; 1995 Apr; 84(4):549-54. PubMed ID: 7790028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to ethanol up-regulates the expression of Mycobacterium avium complex proteins associated with bacterial virulence.
    Bermudez LE; Young LS; Martinelli J; Petrofsky M
    J Infect Dis; 1993 Oct; 168(4):961-8. PubMed ID: 8376842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth.
    Lee KI; Whang J; Choi HG; Son YJ; Jeon HS; Back YW; Park HS; Paik S; Park JK; Choi CH; Kim HJ
    Sci Rep; 2016 Nov; 6():37804. PubMed ID: 27901051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1,25 Dihydroxyvitamin D3-dependent inhibition of growth or killing of Mycobacterium avium complex in human macrophages is mediated by TNF and GM-CSF.
    Bermudez LE; Young LS; Gupta S
    Cell Immunol; 1990 May; 127(2):432-41. PubMed ID: 2183943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential mechanisms of intracellular killing of Mycobacterium avium and Listeria monocytogenes by activated human and murine macrophages. The role of nitric oxide.
    Bermudez LE
    Clin Exp Immunol; 1993 Feb; 91(2):277-81. PubMed ID: 8428392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effector mechanisms involved in cytokine-mediated bacteriostasis of Mycobacterium avium infections in murine macrophages.
    Appelberg R; Orme IM
    Immunology; 1993 Nov; 80(3):352-9. PubMed ID: 8288311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophage's proinflammatory response to a mycobacterial infection is dependent on sphingosine kinase-mediated activation of phosphatidylinositol phospholipase C, protein kinase C, ERK1/2, and phosphatidylinositol 3-kinase.
    Yadav M; Clark L; Schorey JS
    J Immunol; 2006 May; 176(9):5494-503. PubMed ID: 16622018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing of Mycobacterium avium complex.
    Bermudez LE; Young LS
    J Immunol; 1988 May; 140(9):3006-13. PubMed ID: 2834450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitogen-activated protein kinases p38 and ERK1/2 regulated control of Mycobacterium avium replication in primary murine macrophages is independent of tumor necrosis factor-α and interleukin-10.
    Klug K; Ehlers S; Uhlig S; Reiling N
    Innate Immun; 2011 Oct; 17(5):470-85. PubMed ID: 20682586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic ethanol ingestion in rats decreases granulocyte-macrophage colony-stimulating factor receptor expression and downstream signaling in the alveolar macrophage.
    Joshi PC; Applewhite L; Ritzenthaler JD; Roman J; Fernandez AL; Eaton DC; Brown LA; Guidot DM
    J Immunol; 2005 Nov; 175(10):6837-45. PubMed ID: 16272341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated mitogen-activated protein kinase signalling and increased macrophage activation in cells infected with a glycopeptidolipid-deficient Mycobacterium avium.
    Bhatnagar S; Schorey JS
    Cell Microbiol; 2006 Jan; 8(1):85-96. PubMed ID: 16367868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of toll-like receptor 2 expression by macrophages following Mycobacterium avium infection.
    Wang T; Lafuse WP; Zwilling BS
    J Immunol; 2000 Dec; 165(11):6308-13. PubMed ID: 11086067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycopeptidolipids from Mycobacterium avium promote macrophage activation in a TLR2- and MyD88-dependent manner.
    Sweet L; Schorey JS
    J Leukoc Biol; 2006 Aug; 80(2):415-23. PubMed ID: 16760377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.