BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8204216)

  • 1. The 30 nm chromatin fiber as a flexible polymer.
    Ostashevsky JY; Lange CS
    J Biomol Struct Dyn; 1994 Feb; 11(4):813-20. PubMed ID: 8204216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin substructure: an electron microscopic study of thin-sectioned chromatin subjected to sequential protein extraction and water swelling procedures.
    Cameron IL; Pavlat WA; Jeter JR
    Anat Rec; 1979 Aug; 194(4):547-62. PubMed ID: 475016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A polymer model for the structural organization of chromatin loops and minibands in interphase chromosomes.
    Ostashevsky J
    Mol Biol Cell; 1998 Nov; 9(11):3031-40. PubMed ID: 9802894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques.
    Bystricky K; Heun P; Gehlen L; Langowski J; Gasser SM
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16495-500. PubMed ID: 15545610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus.
    Yokota H; van den Engh G; Hearst JE; Sachs RK; Trask BJ
    J Cell Biol; 1995 Sep; 130(6):1239-49. PubMed ID: 7559748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model.
    van den Engh G; Sachs R; Trask BJ
    Science; 1992 Sep; 257(5075):1410-2. PubMed ID: 1388286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal nature of chromatin organization in interphase chicken erythrocyte nuclei: DNA structure exhibits biphasic fractal properties.
    Lebedev DV; Filatov MV; Kuklin AI; Islamov AKh; Kentzinger E; Pantina R; Toperverg BP; Isaev-Ivanov VV
    FEBS Lett; 2005 Feb; 579(6):1465-8. PubMed ID: 15733858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of polyanions on the structure of rat liver nuclear chromatin].
    Prusov AN
    Biokhimiia; 1995 Jun; 60(6):905-16. PubMed ID: 7654865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization.
    Knoch TA
    Results Probl Cell Differ; 2022; 70():495-549. PubMed ID: 36348120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure.
    Belmont AS; Bruce K
    J Cell Biol; 1994 Oct; 127(2):287-302. PubMed ID: 7929576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electron microscopic study of mitosis in mouse duodenal crypt cells confirms that the prophasic condensation of chromatin begins during the DNA-synthesizing (S) stage of the cycle.
    el-Alfy M; Leblond CP
    Am J Anat; 1989 Sep; 186(1):69-84. PubMed ID: 2782289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structure of chromatin. 2: levels of organization of DNA in the nucleus. Highly organized structures].
    Santisteban MS
    Pathol Biol (Paris); 1995 May; 43(5):420-47. PubMed ID: 8532381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher-order structure of mammalian chromatin deduced from viscoelastometry data.
    Ostashevsky JY; Reichman B; Lange CS
    J Biomol Struct Dyn; 1999 Dec; 17(3):567-80. PubMed ID: 10636091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer models for interphase chromosomes.
    Hahnfeldt P; Hearst JE; Brenner DJ; Sachs RK; Hlatky LR
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7854-8. PubMed ID: 8356094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling diffusional transport in the interphase cell nucleus.
    Wedemeier A; Merlitz H; Wu CX; Langowski J
    J Chem Phys; 2007 Jul; 127(4):045102. PubMed ID: 17672725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Isolation of rosette-like structures from partially deproteinized chromatin in rat hepatocytes].
    Prusov AN; Poliakov VIu; Zatsepina OV; Faĭs D; Chentsov IuS
    Tsitologiia; 1985 Sep; 27(9):1026-30. PubMed ID: 4060228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin organization - the 30 nm fiber.
    Grigoryev SA; Woodcock CL
    Exp Cell Res; 2012 Jul; 318(12):1448-55. PubMed ID: 22394510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Living without 30nm chromatin fibers.
    Fussner E; Ching RW; Bazett-Jones DP
    Trends Biochem Sci; 2011 Jan; 36(1):1-6. PubMed ID: 20926298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Current insights into chromatin structure organization].
    Ilatovskiĭ AV; Lebedev DV; Filatov MV; Petukhov MG; Isaev-Ivanov VV
    Tsitologiia; 2012; 54(4):298-306. PubMed ID: 22724366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.