BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8204586)

  • 1. Differential effect of halide anions on the hydrolysis of different dansyl substrates by thermolysin.
    Yang JJ; Artis DR; Van Wart HE
    Biochemistry; 1994 May; 33(21):6516-23. PubMed ID: 8204586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of hydrolysis of dansyl peptide substrates by thermolysin: analysis of fluorescence changes and determination of steady-state kinetic parameters.
    Yang JJ; Van Wart HE
    Biochemistry; 1994 May; 33(21):6508-15. PubMed ID: 8204585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent oligopeptide substrates for kinetic characterization of the specificity of Astacus protease.
    Stöcker W; Ng M; Auld DS
    Biochemistry; 1990 Nov; 29(45):10418-25. PubMed ID: 2261483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence by site-directed mutagenesis that arginine 203 of thermolysin and arginine 717 of neprilysin (neutral endopeptidase) play equivalent critical roles in substrate hydrolysis and inhibitor binding.
    Marie-Claire C; Ruffet E; Antonczak S; Beaumont A; O'Donohue M; Roques BP; Fournié-Zaluski MC
    Biochemistry; 1997 Nov; 36(45):13938-45. PubMed ID: 9374873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate and inhibitor studies of thermolysin-like neutral metalloendopeptidase from kidney membrane fractions. Comparison with bacterial thermolysin.
    Pozsgay M; Michaud C; Liebman M; Orlowski M
    Biochemistry; 1986 Mar; 25(6):1292-9. PubMed ID: 3516218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of a neutral zinc endopeptidase secreted by Flavobacterium meningosepticum.
    Grimwood BG; Plummer TH; Tarentino AL
    Arch Biochem Biophys; 1994 May; 311(1):127-32. PubMed ID: 8185308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction of neprilysin (neutral endopeptidase) and thermolysin with cyclic peptides.
    Vijayaragahaven J; Tucker M; Fehrentz JA; Isbell D; Hersh LB
    Arch Biochem Biophys; 1995 Oct; 322(2):405-9. PubMed ID: 7574714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolysis of peptides by carboxypeptidase A: equilibrium trapping of the ES2 intermediate.
    Geoghegan KF; Galdes A; Hanson G; Holmquist B; Auld DS; Vallee BL
    Biochemistry; 1986 Aug; 25(16):4669-74. PubMed ID: 3021197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the thermolysin-like cleavage of biologically active peptides by Xenopus laevis peptide hormone inactivating enzyme.
    Joudiou C; Carvalho KM; Camarao G; Boussetta H; Cohen P
    Biochemistry; 1993 Jun; 32(23):5959-66. PubMed ID: 8507636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new substrate for porcine pepsin possessing cryptic fluorescence properties.
    Deyrup C; Dunn BM
    Anal Biochem; 1983 Mar; 129(2):502-12. PubMed ID: 6405662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arazoformyl dipeptide substrates for thermolysin. Confirmation of a reverse protonation catalytic mechanism.
    Mock WL; Stanford DJ
    Biochemistry; 1996 Jun; 35(23):7369-77. PubMed ID: 8652513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis of dansyl-peptide substrates by leucine aminopeptidase: origin of dansyl fluorescence changes during hydrolysis.
    Lin WY; Van Wart HE
    Biochemistry; 1988 Jul; 27(14):5054-61. PubMed ID: 3167028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state kinetics of hydrolysis of dansyl-peptide substrates by leucine aminopeptidase.
    Lin WY; Lin SH; Van Wart HE
    Biochemistry; 1988 Jul; 27(14):5062-8. PubMed ID: 3167029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The binding of L-valyl-L-tryptophan to crystalline thermolysin illustrates the mode of interaction of a product of peptide hydrolysis.
    Holden HM; Matthews BW
    J Biol Chem; 1988 Mar; 263(7):3256-60. PubMed ID: 3343246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of a chloride-dependent intermediate during catalysis by angiotensin converting enzyme using radiationless energy transfer.
    Harper JW; Shapiro R; Riordan JF
    Biochemistry; 1987 Mar; 26(5):1284-8. PubMed ID: 3032249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive fluorometric assay for the activity of chymosin.
    Yonezawa H; Uchikoba T; Kaneda M; Izumiya N
    Int J Pept Protein Res; 1996; 47(1-2):56-61. PubMed ID: 8907500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of amino acid residues at the cleavable site of substrates on the remarkable activation of thermolysin by salts.
    Inouye K; Lee SB; Tonomura B
    Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):133-8. PubMed ID: 8670097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the S1' subsite glutamine 215 in activity and specificity of stromelysin-3 by site-directed mutagenesis.
    Holtz B; Cuniasse P; Boulay A; Kannan R; Mucha A; Beau F; Basset P; Dive V
    Biochemistry; 1999 Sep; 38(37):12174-9. PubMed ID: 10508422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin.
    Kusano M; Yasukawa K; Hashida Y; Inouye K
    J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New substrates for enkephalinase (neutral endopeptidase) based on fluorescence energy transfer.
    Malfroy B; Burnier J
    Biochem Biophys Res Commun; 1987 Feb; 143(1):58-66. PubMed ID: 3548727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.