These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 8204632)

  • 1. Role of the alpha C domains of fibrin in clot formation.
    Gorkun OV; Veklich YI; Medved LV; Henschen AH; Weisel JW
    Biochemistry; 1994 Jun; 33(22):6986-97. PubMed ID: 8204632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carboxyl-terminal portions of the alpha chains of fibrinogen and fibrin. Localization by electron microscopy and the effects of isolated alpha C fragments on polymerization.
    Veklich YI; Gorkun OV; Medved LV; Nieuwenhuizen W; Weisel JW
    J Biol Chem; 1993 Jun; 268(18):13577-85. PubMed ID: 8514790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots.
    Weisel JW; Veklich Y; Gorkun O
    J Mol Biol; 1993 Jul; 232(1):285-97. PubMed ID: 8331664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure and function of the alpha C domains of fibrinogen.
    Weisel JW; Medved L
    Ann N Y Acad Sci; 2001; 936():312-27. PubMed ID: 11460487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ultrastructure of fibrinogen-420 and the fibrin-420 clot.
    Mosesson MW; DiOrio JP; Hernandez I; Hainfeld JF; Wall JS; Grieninger G
    Biophys Chem; 2004 Dec; 112(2-3):209-14. PubMed ID: 15572250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled.
    Weisel JW; Nagaswami C
    Biophys J; 1992 Jul; 63(1):111-28. PubMed ID: 1420861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of pH on the generation of turbidity and elasticity associated with fibrinogen-fibrin conversion by thrombin are remarkably influenced by sialic acid in fibrinogen.
    Okude M; Yamanaka A; Akihama S
    Biol Pharm Bull; 1995 Feb; 18(2):203-7. PubMed ID: 7742784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of the COOH-terminal portion of the alpha-chain of fibrin in the branching of fibers to form a clot.
    Weisel JW; Papsun DM
    Thromb Res; 1987 Jul; 47(2):155-63. PubMed ID: 2958957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymerization of fibrinogen-derived fragment X and subsequent rearrangement of fibers.
    Sato H; Weisel JW
    Thromb Res; 1990 May; 58(3):205-12. PubMed ID: 2353337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of fibrinogen alpha C-domains in the fibrin assembly process.
    Medved' LV; Gorkun OV; Manyakov VF; Belitser VA
    FEBS Lett; 1985 Feb; 181(1):109-12. PubMed ID: 3972099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrinogen C-terminal peptidic sequences (Haptides) modulate fibrin polymerization.
    Marx G; Ben-Moshe M; Magdassi S; Gorodetsky R
    Thromb Haemost; 2004 Jan; 91(1):43-51. PubMed ID: 14691567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening.
    Piechocka IK; Kurniawan NA; Grimbergen J; Koopman J; Koenderink GH
    J Thromb Haemost; 2017 May; 15(5):938-949. PubMed ID: 28166607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that fibrinogen γ' directly interferes with protofibril growth: implications for fibrin structure and clot stiffness.
    Allan P; Uitte de Willige S; Abou-Saleh RH; Connell SD; Ariëns RA
    J Thromb Haemost; 2012 Jun; 10(6):1072-80. PubMed ID: 22463367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The study of fibrin polymerization with monoclonal antibodies.
    Lugovskoi EV; Makogonenko EM; Chudnovets VS; Derzskaya SG; Gogolinskaya GK; Kolesnikova IN; Bukhanevich AM; Sitak IN; Lyashko ED; Komissarenko SV
    Biomed Sci; 1991; 2(3):249-56. PubMed ID: 1751757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibrinogen gamma-chain splice variant gamma' alters fibrin formation and structure.
    Cooper AV; Standeven KF; Ariëns RA
    Blood; 2003 Jul; 102(2):535-40. PubMed ID: 12663453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibrin clot formation under diverse clotting conditions: Comparing turbidimetry and thromboelastography.
    Zeng Z; Fagnon M; Nallan Chakravarthula T; Alves NJ
    Thromb Res; 2020 Mar; 187():48-55. PubMed ID: 31954276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of an effective fibrin beta-chain polymerization site: implications for the polymerization mechanism.
    Hsieh Kh
    Biochemistry; 1997 Aug; 36(31):9381-7. PubMed ID: 9235981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ioxaglate--an ionic low osmolar contrast medium--on fibrin polymerization in vitro.
    Brass O; Belleville J; Sabattier V; Corot C
    Blood Coagul Fibrinolysis; 1993 Oct; 4(5):689-97. PubMed ID: 8292718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The isolation of fibrinogen monomer dramatically influences fibrin polymerization.
    Huang L; Lord ST
    Thromb Res; 2013 Jun; 131(6):e258-63. PubMed ID: 23622556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Streptococcus gordonii FSS2 Challisin affects fibrin clot formation by digestion of the αC region and cleavage of the N -terminal region of the Bβ chains of fibrinogen.
    Harty DW; Farahani RM; Simonian MR; Hunter L; Hunter N
    Thromb Haemost; 2012 Aug; 108(2):236-46. PubMed ID: 22552295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.