BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8204637)

  • 1. The role of vitamin D in chorioallantoic membrane calcium transport.
    Elaroussi MA; Uhland-Smith A; Hellwig W; DeLuca HF
    Biochim Biophys Acta; 1994 Jun; 1192(1):1-6. PubMed ID: 8204637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium uptake by chorioallantoic membrane: effects of vitamins D and K.
    Elaroussi MA; DeLuca HF
    Am J Physiol; 1994 Dec; 267(6 Pt 1):E837-41. PubMed ID: 7810624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional involvement of carbonic anhydrase in calcium transport of the chick chorioallantoic membrane.
    Tuan RS; Zrike J
    Biochem J; 1978 Oct; 176(1):67-74. PubMed ID: 103544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and regulation of calcium transport by the chick embryonic chorioallantoic membrane.
    Tuan RS
    J Exp Zool Suppl; 1987; 1():1-13. PubMed ID: 2955074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of calcium-regulating hormones on transport of calcium across the chorioallantoic membrane of the chicken embryo.
    Packard MJ; Clark NB; Erickson JP
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Feb; 119(2):547-52. PubMed ID: 11249001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A specific binding protein for 1 alpha,25-dihydroxyvitamin D in the chick embryo chorioallantoic membrane.
    Coty WA; McConkey CL; Brown TA
    J Biol Chem; 1981 Jun; 256(11):5545-9. PubMed ID: 6263881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbonic anhydrase and calcium transport function of the chick embryonic chorioallantoic membrane.
    Tuan RS
    Ann N Y Acad Sci; 1984; 429():459-72. PubMed ID: 6430183
    [No Abstract]   [Full Text] [Related]  

  • 8. Supplemented eggshell restores calcium transport in chorioallantoic membrane of cultured shell-less chick embryos.
    Tuan RS
    J Embryol Exp Morphol; 1983 Apr; 74():119-31. PubMed ID: 6604121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of extraembryonic calcium mobilization by the developing chick embryo.
    Tuan RS; Ono T
    J Embryol Exp Morphol; 1986 Sep; 97():63-74. PubMed ID: 3794604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival of vitamin D-deficient embryos: time and choice of cholecalciferol or its metabolites for treatment in ovo.
    Elaroussi MA; Deluca HF; Forte LR; Biellier HV
    Poult Sci; 1993 Jun; 72(6):1118-26. PubMed ID: 8391690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indexes of vitamin D deficiency in Japanese quail embryos.
    Elaroussi MA; Forte LR; Biellier HV; Eber SL; Poelling RE; Krause WJ
    Am J Physiol; 1988 May; 254(5 Pt 1):E639-51. PubMed ID: 2834961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitamin D Metabolites and Their Association with Calcium, Phosphorus, and PTH Concentrations, Severity of Illness, and Mortality in Hospitalized Equine Neonates.
    Kamr AM; Dembek KA; Reed SM; Slovis NM; Zaghawa AA; Rosol TJ; Toribio RE
    PLoS One; 2015; 10(6):e0127684. PubMed ID: 26046642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new member to the astacin family of metalloendopeptidases: a novel 1,25-dihydroxyvitamin D-3-stimulated mRNA from chorioallantoic membrane of quail.
    Elaroussi MA; DeLuca HF
    Biochim Biophys Acta; 1994 Jan; 1217(1):1-8. PubMed ID: 8286408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of 25(OH)D3 to 1,25(OH)2D3 and 24,25(OH)2D3 by chick chorioallantoic cells in culture.
    Puzas JE; Turner RT; Forte MD; Kenny AD; Baylink DJ
    Gen Comp Endocrinol; 1980 Sep; 42(1):116-22. PubMed ID: 6967843
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of vitamin D deficiency in the chicken embryo.
    Narbaitz R; Tsang CP; Grunder AA
    Calcif Tissue Int; 1987 Feb; 40(2):109-13. PubMed ID: 3105832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice.
    Chow EC; Quach HP; Vieth R; Pang KS
    Am J Physiol Endocrinol Metab; 2013 May; 304(9):E977-89. PubMed ID: 23482451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogeny of vitamin D action on the morphology and calcium transport properties of the chick embryonic yolk sac.
    Clark NB; Murphy MJ; Lee SK
    J Dev Physiol; 1989 Apr; 11(4):243-51. PubMed ID: 2607094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of 1,25-dihydroxyvitamin D3 on colonic calcium transport in vitamin D-deficient and normal rats.
    Favus MJ; Langman CB
    Am J Physiol; 1984 Mar; 246(3 Pt 1):G268-73. PubMed ID: 6546644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between calcium and 1,25-dihydroxyvitamin D3 in the regulation of preproparathyroid hormone and vitamin D receptor messenger ribonucleic acid in avian parathyroids.
    Russell J; Bar A; Sherwood LM; Hurwitz S
    Endocrinology; 1993 Jun; 132(6):2639-44. PubMed ID: 8389284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the murine renal vitamin D receptor by 1,25-dihydroxyvitamin D3 and calcium.
    Healy KD; Zella JB; Prahl JM; DeLuca HF
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9733-7. PubMed ID: 12900504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.