These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 8204645)

  • 21. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose repression in Saccharomyces cerevisiae.
    Kayikci Ö; Nielsen J
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26205245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrates for yeast mitochondrial cAMP-dependent protein kinase activity.
    Rahman MU; Hudson AP
    Biochem Biophys Res Commun; 1995 Sep; 214(1):188-94. PubMed ID: 7669038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rim15 and Sch9 kinases are involved in induction of autophagic degradation of ribosomes in budding yeast.
    Waliullah TM; Yeasmin AM; Kaneko A; Koike N; Terasawa M; Totsuka T; Ushimaru T
    Biosci Biotechnol Biochem; 2017 Feb; 81(2):307-310. PubMed ID: 27659307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amino acid residues involved in ligand preference of the Snf3 transporter-like sensor in Saccharomyces cerevisiae.
    Dietvorst J; Karhumaa K; Kielland-Brandt MC; Brandt A
    Yeast; 2010 Mar; 27(3):131-8. PubMed ID: 20014043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production.
    Kim SJ; Lee JE; Lee DY; Park H; Kim KH; Park YC
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8989-9002. PubMed ID: 30121750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sugar transport in normal and mutant yeast cells.
    Cirillo VP
    Methods Enzymol; 1989; 174():617-22. PubMed ID: 2698991
    [No Abstract]   [Full Text] [Related]  

  • 28. Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae.
    Boles E; Heinisch J; Zimmermann FK
    Yeast; 1993 Jul; 9(7):761-70. PubMed ID: 8368010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catabolite inactivation of the maltose transporter in nitrogen-starved yeast could be due to the stimulation of general protein turnover.
    Peñalver E; Lucero P; Moreno E; Lagunas R
    FEMS Microbiol Lett; 1998 Sep; 166(2):317-24. PubMed ID: 9770289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ctk1 function is necessary for full translation initiation activity in Saccharomyces cerevisiae.
    Coordes B; Brünger KM; Burger K; Soufi B; Horenk J; Eick D; Olsen JV; Sträßer K
    Eukaryot Cell; 2015 Jan; 14(1):86-95. PubMed ID: 25416238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of allantoate transport in wild-type and mutant strains of Saccharomyces cerevisiae.
    Chisholm VT; Lea HZ; Rai R; Cooper TG
    J Bacteriol; 1987 Apr; 169(4):1684-90. PubMed ID: 3549700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae.
    Gamo FJ; Lafuente MJ; Gancedo C
    J Bacteriol; 1994 Dec; 176(24):7423-9. PubMed ID: 8002563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae.
    Belinchón MM; Gancedo JM
    Arch Microbiol; 2003 Oct; 180(4):293-7. PubMed ID: 12955310
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The repressor Rgt1 and the cAMP-dependent protein kinases control the expression of the SUC2 gene in Saccharomyces cerevisiae.
    Gancedo JM; Flores CL; Gancedo C
    Biochim Biophys Acta; 2015 Jul; 1850(7):1362-7. PubMed ID: 25810078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo phosphorylation of Saccharomyces cerevisiae ribosomal protein S10 by cyclic-AMP-dependent protein kinase.
    Otaka E; Kumazaki T; Matsumoto K
    J Bacteriol; 1986 Aug; 167(2):713-5. PubMed ID: 3015887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae.
    Nikawa J; Cameron S; Toda T; Ferguson KM; Wigler M
    Genes Dev; 1987 Nov; 1(9):931-7. PubMed ID: 2828175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catabolite inactivation of the yeast maltose transporter requires ubiquitin-ligase npi1/rsp5 and ubiquitin-hydrolase npi2/doa4.
    Lucero P; Lagunas R
    FEMS Microbiol Lett; 1997 Feb; 147(2):273-7. PubMed ID: 9119204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression.
    Kraakman LS; Winderickx J; Thevelein JM; De Winde JH
    Biochem J; 1999 Oct; 343 Pt 1(Pt 1):159-68. PubMed ID: 10493925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional Analysis of Kinases and Transcription Factors in
    Youn JY; Friesen H; Nguyen Ba AN; Liang W; Messier V; Cox MJ; Moses AM; Andrews B
    G3 (Bethesda); 2017 Mar; 7(3):911-921. PubMed ID: 28122947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inactivation of the CDC25 gene product in Saccharomyces cerevisiae leads to a decrease in glycolytic activity which is independent of cAMP levels.
    Oehlen LJ; Scholte ME; de Koning W; van Dam K
    J Gen Microbiol; 1993 Sep; 139(9):2091-100. PubMed ID: 8245836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.