These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 8204991)
1. Periodic, quasi-periodic, and chaotic coexistence of two competing microbial populations in a periodically operated chemostat. Lenas P; Pavlou S Math Biosci; 1994 May; 121(1):61-110. PubMed ID: 8204991 [TBL] [Abstract][Full Text] [Related]
2. Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate. Lenas P; Pavlou S Math Biosci; 1995 Oct; 129(2):111-42. PubMed ID: 7549217 [TBL] [Abstract][Full Text] [Related]
3. Oscillations of two competing microbial populations in configurations of two interconnected chemostats. Lenas P; Thomopoulos NA; Vayenas DV; Pavlou S Math Biosci; 1998 Feb; 148(1):43-63. PubMed ID: 9597824 [TBL] [Abstract][Full Text] [Related]
4. Periodic coexistence in the chemostat with three species competing for three essential resources. Li B Math Biosci; 2001 Nov; 174(1):27-40. PubMed ID: 11595255 [TBL] [Abstract][Full Text] [Related]
5. Coexistence of three microbial populations competing for three complementary nutrients in a chemostat. Vayenas DV; Pavlou S Math Biosci; 1999 Oct; 161(1-2):1-13. PubMed ID: 10546438 [TBL] [Abstract][Full Text] [Related]
6. On the coexistence of competing microbial species in a chemostat under cycling. Pavlou S; Kevrekidis IG; Lyberatos G Biotechnol Bioeng; 1990 Feb; 35(3):224-32. PubMed ID: 18592514 [TBL] [Abstract][Full Text] [Related]
7. Consequences of symbiosis for food web dynamics. Kooi BW; Kuijper LD; Kooijman SA J Math Biol; 2004 Sep; 49(3):227-71. PubMed ID: 15293013 [TBL] [Abstract][Full Text] [Related]
8. Complex dynamics of microbial competition in the gradostat. Gaki A; Theodorou A; Vayenas DV; Pavlou S J Biotechnol; 2009 Jan; 139(1):38-46. PubMed ID: 18809443 [TBL] [Abstract][Full Text] [Related]
9. Competition of two microbial populations for a single resource in a chemostat when one of them exhibits wall attachment. Baltzis BC; Fredrickson AG Biotechnol Bioeng; 1983 Oct; 25(10):2419-39. PubMed ID: 18548571 [TBL] [Abstract][Full Text] [Related]
10. Chaotic dynamics of a food web in a chemostat. Vayenas DV; Pavlou S Math Biosci; 1999; 162(1-2):69-84. PubMed ID: 10616281 [TBL] [Abstract][Full Text] [Related]
11. Microbial predation in a periodically operated chemostat: a global study of the interaction between natural and externally imposed frequencies. Pavlou S; Kevrekidis IG Math Biosci; 1992 Feb; 108(1):1-55. PubMed ID: 1550993 [TBL] [Abstract][Full Text] [Related]
12. On the coexistence of three microbial populations competing for two complementary substrates in configurations of interconnected chemostats. Thomopoulos NA; Vayenas DV; Pavlou S Math Biosci; 1998 Dec; 154(2):87-102. PubMed ID: 9949649 [TBL] [Abstract][Full Text] [Related]
13. Competition in chemostat-type equations with two habitats. Nakaoka S; Takeuchi Y Math Biosci; 2006 May; 201(1-2):157-71. PubMed ID: 16448673 [TBL] [Abstract][Full Text] [Related]
14. Steady-state coexistence of three pure and simple competitors in a four-membered reactor network. Baltzis BC; Wu M Math Biosci; 1994 Oct; 123(2):147-65. PubMed ID: 7827417 [TBL] [Abstract][Full Text] [Related]
15. Rock-scissors-paper game in a chaotic flow: the effect of dispersion on the cyclic competition of microorganisms. Károlyi G; Neufeld Z; Scheuring I J Theor Biol; 2005 Sep; 236(1):12-20. PubMed ID: 15967180 [TBL] [Abstract][Full Text] [Related]
16. Periodic and quasi-periodic behavior in resource-dependent age structured population models. Dilão R; Domingos T Bull Math Biol; 2001 Mar; 63(2):207-30. PubMed ID: 11276524 [TBL] [Abstract][Full Text] [Related]
17. The operating diagram of a model of two competitors in a chemostat with an external inhibitor. Dellal M; Lakrib M; Sari T Math Biosci; 2018 Aug; 302():27-45. PubMed ID: 29803551 [TBL] [Abstract][Full Text] [Related]
18. Exploitative competition in the chemostat for two perfectly substitutable resources. Ballyk MM; Wolkowicz GS Math Biosci; 1993 Dec; 118(2):127-80. PubMed ID: 8305826 [TBL] [Abstract][Full Text] [Related]
19. Bacteria and lytic phage coexistence in a chemostat with periodic nutrient supply. Aviram I; Rabinovitch A Bull Math Biol; 2014 Jan; 76(1):225-44. PubMed ID: 24222038 [TBL] [Abstract][Full Text] [Related]
20. A periodic Droop model for two species competition in a chemostat. White MC; Zhao XQ Bull Math Biol; 2009 Jan; 71(1):145-61. PubMed ID: 18825462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]