These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8204991)

  • 21. Chaos in a periodically forced chemostat with algal mortality.
    Clodong S; Blasius B
    Proc Biol Sci; 2004 Aug; 271(1548):1617-24. PubMed ID: 15306309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-periodicity in chemostat equations: a multi-dimensional negative Bendixson-Dulac criterion.
    Fiedler B; Hsu SB
    J Math Biol; 2009 Aug; 59(2):233-53. PubMed ID: 18956192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Competition in the presence of a lethal external inhibitor.
    Hsu SB; Li YS; Waltman P
    Math Biosci; 2000 Oct; 167(2):177-99. PubMed ID: 10998488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The growth of pure and simple microbial competitors in a moving distributed medium.
    Kung CM; Baltzis BC
    Math Biosci; 1992 Oct; 111(2):295-313. PubMed ID: 1515749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A density-dependent model of competition for one resource in the chemostat.
    Fekih-Salem R; Lobry C; Sari T
    Math Biosci; 2017 Apr; 286():104-122. PubMed ID: 28212840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coexistence in the chemostat as a result of metabolic by-products.
    Hesseler J; Schmidt JK; Reichl U; Flockerzi D
    J Math Biol; 2006 Oct; 53(4):556-84. PubMed ID: 16819650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Competition and coexistence in flowing habitats with a hydraulic storage zone.
    Grover JP; Hsu SB; Wang FB
    Math Biosci; 2009 Nov; 222(1):42-52. PubMed ID: 19706299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamical mechanism for coexistence of dispersing species.
    Harrison MA; Lai YC; Holt RD
    J Theor Biol; 2001 Nov; 213(1):53-72. PubMed ID: 11708854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Competition in the presence of a virus in an aquatic system: an SIS model in the chemostat.
    Northcott K; Imran M; Wolkowicz GS
    J Math Biol; 2012 May; 64(6):1043-86. PubMed ID: 21671030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Periodic coexistence of four species competing for three essential resources.
    Li B; Smith HL
    Math Biosci; 2003 Aug; 184(2):115-35. PubMed ID: 12832144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple limit cycles in the standard model of three species competition for three essential resources.
    Baer SM; Li B; Smith HL
    J Math Biol; 2006 Jun; 52(6):745-60. PubMed ID: 16463185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Competition for a single resource and coexistence of several species in the chemostat.
    Abdellatif N; Fekih-Salem R; Sari T
    Math Biosci Eng; 2016 Aug; 13(4):631-652. PubMed ID: 27775379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global analysis of competition for perfectly substitutable resources with linear response.
    Ballyk MM; McCluskey CC; Wolkowicz GS
    J Math Biol; 2005 Oct; 51(4):458-90. PubMed ID: 16012799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Periodic temporal environmental variations induce coexistence in resource competition models.
    Burkart T; Willeke J; Frey E
    Phys Rev E; 2023 Sep; 108(3-1):034404. PubMed ID: 37849086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coexistence and limiting similarity of consumer species competing for a linear array of resources.
    Abrams PA; Rueffler C
    Ecology; 2009 Mar; 90(3):812-22. PubMed ID: 19341150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long run coexistence in the chemostat with multiple species.
    Rapaport A; Dochain D; Harmand J
    J Theor Biol; 2009 Mar; 257(2):252-9. PubMed ID: 19111560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Species coexistence under resource competition with intraspecific and interspecific direct competition in a chemostat.
    Saito Y; Miki T
    Theor Popul Biol; 2010 Nov; 78(3):173-82. PubMed ID: 20674582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Competing populations in flows with chaotic mixing.
    Scheuring I; Károlyi G; Toroczkai Z; Tél T; Péntek A
    Theor Popul Biol; 2003 Mar; 63(2):77-90. PubMed ID: 12615492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coexistence of two competitors on one resource and one inhibitor: a chemostat model based on bacteria and antibiotics.
    Lenski RE; Hattingh SE
    J Theor Biol; 1986 Sep; 122(1):83-93. PubMed ID: 3796009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impossibility of coexistence of three pure and simple competitors in configurations of three interconnected chemostats.
    Chang SW; Baltzis BC
    Biotechnol Bioeng; 1989 Jan; 33(4):460-70. PubMed ID: 18587937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.