BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8205319)

  • 1. The role of nitric oxide and potassium channels in endothelium-dependent vasodilation in SHR.
    Hendriks MG; Pfaffendorf M; van Zwieten PA
    Blood Press; 1993 Sep; 2(3):233-43. PubMed ID: 8205319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats.
    Sunano S; Watanabe H; Tanaka S; Sekiguchi F; Shimamura K
    Br J Pharmacol; 1999 Feb; 126(3):709-16. PubMed ID: 10188983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of nitric oxide and endothelium-derived hyperpolarizing factor in vasorelaxant effect of acetylcholine as influenced by aging and hypertension.
    Mantelli L; Amerini S; Ledda F
    J Cardiovasc Pharmacol; 1995 Apr; 25(4):595-602. PubMed ID: 7596128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide-mediated changes in vascular reactivity in pregnancy in spontaneously hypertensive rats.
    Chu ZM; Beilin LJ
    Br J Pharmacol; 1993 Nov; 110(3):1184-8. PubMed ID: 8298807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A non-cyclo-oxygenase, non-nitric oxide relaxing factor is present in resistance arteries of normotensive but not spontaneously hypertensive rats.
    Li J; Bian KA; Bukoski RD
    Am J Med Sci; 1994 Jan; 307(1):7-14. PubMed ID: 8291511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the effects of supplementation with whey mineral and potassium on arterial tone in experimental hypertension.
    Wu X; Tolvanen JP; Hutri-Kähönen N; Kähönen M; Mäkynen H; Korpela R; Ruskoaho H; Karjala K; Pörsti I
    Cardiovasc Res; 1998 Nov; 40(2):364-74. PubMed ID: 9893730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelium-derived relaxing factor released by 5-HT: distinct from nitric oxide in basilar arteries of normotensive and hypertensive rats.
    Yokota Y; Imaizumi Y; Asano M; Matsuda T; Watanabe M
    Br J Pharmacol; 1994 Sep; 113(1):324-30. PubMed ID: 7812628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial function in spontaneously hypertensive rats: influence of quinapril treatment.
    Kähönen M; Mäkynen H; Wu X; Arvola P; Pörsti I
    Br J Pharmacol; 1995 Jul; 115(5):859-67. PubMed ID: 8548188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different mechanisms for testosterone-induced relaxation of aorta between normotensive and spontaneously hypertensive rats.
    Honda H; Unemoto T; Kogo H
    Hypertension; 1999 Dec; 34(6):1232-6. PubMed ID: 10601123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charybdotoxin-sensitive K+ channels regulate the myogenic tone in the resting state of arteries from spontaneously hypertensive rats.
    Asano M; Masuzawa-Ito K; Matsuda T
    Br J Pharmacol; 1993 Jan; 108(1):214-22. PubMed ID: 7679030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased endothelium-dependent hyperpolarization to acetylcholine in smooth muscle of the mesenteric artery of spontaneously hypertensive rats.
    Fujii K; Tominaga M; Ohmori S; Kobayashi K; Koga T; Takata Y; Fujishima M
    Circ Res; 1992 Apr; 70(4):660-9. PubMed ID: 1551193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arterial contractions induced by cumulative addition of calcium in hypertensive and normotensive rats: influence of endothelium.
    Kähönen M; Arvola P; Wu X; Pörsti I
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Jun; 349(6):627-36. PubMed ID: 7969514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of muscarinic receptor alkylation on endothelium-dependent vasodilation in SHR.
    Hendriks MG; Pfaffendorf M; van Zwieten PA
    Blood Press; 1993 Dec; 2(4):332-8. PubMed ID: 8173704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cilazapril reverses endothelium-dependent vasodilator response to acetylcholine in mesenteric artery from spontaneously hypertensive rats.
    Young RH; Ding YA; Lee YM; Yen MH
    Am J Hypertens; 1995 Sep; 8(9):928-33. PubMed ID: 8541009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium channel antagonists and vascular reactivity in stroke-prone spontaneously hypertensive rats.
    Kolias TJ; Chai S; Webb RC
    Am J Hypertens; 1993 Jun; 6(6 Pt 1):528-33. PubMed ID: 8343237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide in mesenteric vascular reactivity: a comparison between rats with normotension and hypertension.
    Chang HR; Lee RP; Wu CY; Chen HI
    Clin Exp Pharmacol Physiol; 2002 Apr; 29(4):275-80. PubMed ID: 11985535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired function of alpha-2 adrenoceptors in smooth muscle of mesenteric arteries from spontaneously hypertensive rats.
    Feres T; Borges AC; Silva EG; Paiva AC; Paiva TB
    Br J Pharmacol; 1998 Nov; 125(6):1144-9. PubMed ID: 9863640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of hypertension and diabetes mellitus on the vascular reactivity of resistance arteries.
    Hendriks MG; Kam KL; Pijl AJ; Pfaffendorf M; van Zwieten PA
    Blood Press; 1993 Mar; 2(1):69-76. PubMed ID: 8193736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of endothelium-derived hyperpolarizing factor and nitric oxide on endothelial function in femoral resistance arteries of spontaneously hypertensive rats.
    Mori Y; Ohyanagi M; Koida S; Ueda A; Ishiko K; Iwasaki T
    Hypertens Res; 2006 Mar; 29(3):187-95. PubMed ID: 16755154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelium-derived relaxing factor-mediated vasodilation in mouse mesenteric vascular beds.
    Fujiwara H; Wake Y; Hashikawa-Hobara N; Makino K; Takatori S; Zamami Y; Kitamura Y; Kawasaki H
    J Pharmacol Sci; 2012; 118(3):373-81. PubMed ID: 22450195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.