These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Functional homogeneity of the non-mitochondrial Ca2+ pool in intact mouse lacrimal acinar cells. Bird GJ; Obie JF; Putney JW J Biol Chem; 1992 Sep; 267(26):18382-6. PubMed ID: 1382054 [TBL] [Abstract][Full Text] [Related]
4. Ca2+ release from platelet intracellular stores by thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone: relationship to Ca2+ pools and relevance in platelet activation. Authi KS; Bokkala S; Patel Y; Kakkar VV; Munkonge F Biochem J; 1993 Aug; 294 ( Pt 1)(Pt 1):119-26. PubMed ID: 8363562 [TBL] [Abstract][Full Text] [Related]
5. Evidence for a Ca2+ pool associated with secretory granules in rat submandibular acinar cells. Martinez JR; Willis S; Puente S; Wells J; Helmke R; Zhang GH Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):627-34. PubMed ID: 8973577 [TBL] [Abstract][Full Text] [Related]
6. Differences in intracellular CA2+ stores of submandibular cells of adult and newborn rats. Martinez JR; Wells J; Puente S; Willis S; Zhang GH Proc Soc Exp Biol Med; 1997 Mar; 214(3):271-9. PubMed ID: 9083261 [TBL] [Abstract][Full Text] [Related]
7. Calcium pools in Ehrlich carcinoma cells. A major, high affinity Ca2+ pool is sensitive to both inositol 1,4,5-trisphosphate and thapsigargin. Gamberucci A; Fulceri R; Tarroni P; Giunti R; Marcolongo P; Sorrentino V; Benedetti A Cell Calcium; 1995 Jun; 17(6):431-41. PubMed ID: 8521457 [TBL] [Abstract][Full Text] [Related]
8. Mobilization of calcium by inositol trisphosphates from permeabilized rat parotid acinar cells. Evidence for translocation of calcium from uptake to release sites within the inositol 1,4,5-trisphosphate- and thapsigargin-sensitive calcium pool. Menniti FS; Bird GS; Takemura H; Thastrup O; Potter BV; Putney JW J Biol Chem; 1991 Jul; 266(21):13646-53. PubMed ID: 1906881 [TBL] [Abstract][Full Text] [Related]
9. Inositol 1,4,5-trisphosphate- and arachidonic acid-induced calcium mobilization in T and B lymphocytes. Corado J; Le Deist F; Griscelli C; Fischer A Cell Immunol; 1990 Apr; 126(2):245-54. PubMed ID: 2107029 [TBL] [Abstract][Full Text] [Related]
10. Ca2+ mobilizing action of sphingosine in Jurkat human leukemia T cells. Evidence that sphingosine releases Ca2+ from inositol trisphosphate- and phosphatidic acid-sensitive intracellular stores through a mechanism independent of inositol trisphosphate. Sakano S; Takemura H; Yamada K; Imoto K; Kaneko M; Ohshika H J Biol Chem; 1996 May; 271(19):11148-55. PubMed ID: 8626660 [TBL] [Abstract][Full Text] [Related]
12. Multiple intracellular Ca2+ pools exist in human foreskin fibroblast cells: the effect of BK on release and filling of the non-cytosolic Ca2+ pools. Baumgarten LB; Lee HC; Villereal ML Cell Calcium; 1995 Jan; 17(1):41-52. PubMed ID: 7553780 [TBL] [Abstract][Full Text] [Related]
13. Ca2+ entry in T cells is activated by emptying the inositol 1,4,5-triphosphate sensitive Ca2+ pool. Chow SC; Jondal M Cell Calcium; 1990; 11(10):641-6. PubMed ID: 2095981 [TBL] [Abstract][Full Text] [Related]
14. Antigen and thapsigargin promote influx of Ca2+ in rat basophilic RBL-2H3 cells by ostensibly similar mechanisms that allow filling of inositol 1,4,5-trisphosphate-sensitive and mitochondrial Ca2+ stores. Ali H; Maeyama K; Sagi-Eisenberg R; Beaven MA Biochem J; 1994 Dec; 304 ( Pt 2)(Pt 2):431-40. PubMed ID: 7998977 [TBL] [Abstract][Full Text] [Related]
15. Thapsigargin-sensitive Ca(2+)-ATPases account for Ca2+ uptake to inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive Ca2+ stores in adrenal chromaffin cells. Poulsen JC; Caspersen C; Mathiasen D; East JM; Tunwell RE; Lai FA; Maeda N; Mikoshiba K; Treiman M Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):749-58. PubMed ID: 7741706 [TBL] [Abstract][Full Text] [Related]
16. Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. Takemura H; Hughes AR; Thastrup O; Putney JW J Biol Chem; 1989 Jul; 264(21):12266-71. PubMed ID: 2663854 [TBL] [Abstract][Full Text] [Related]
17. Thrombin-induced Ca2+ mobilization in vascular smooth muscle utilizes a slowly ribosylating pertussis toxin-sensitive G protein. Evidence for the involvement of a G protein in inositol trisphosphate-dependent Ca2+ release. Neylon CB; Nickashin A; Little PJ; Tkachuk VA; Bobik A J Biol Chem; 1992 Apr; 267(11):7295-302. PubMed ID: 1559973 [TBL] [Abstract][Full Text] [Related]
18. Role of inositol trisphosphate-sensitive calcium stores in the regulation of adrenocorticotropin secretion by perifused rat anterior pituitary cells. Won JG; Orth DN Endocrinology; 1995 Dec; 136(12):5399-408. PubMed ID: 7588288 [TBL] [Abstract][Full Text] [Related]
19. Vectorial Ca2+ flux from the extracellular space to the endoplasmic reticulum via a restricted cytoplasmic compartment regulates inositol 1,4,5-trisphosphate-stimulated Ca2+ release from internal stores in vascular endothelial cells. Cabello OA; Schilling WP Biochem J; 1993 Oct; 295 ( Pt 2)(Pt 2):357-66. PubMed ID: 8240234 [TBL] [Abstract][Full Text] [Related]
20. Mobilization of Ca2+ stores in individual pancreatic beta-cells permeabilized or not with digitonin or alpha-toxin. Tengholm A; Hellman B; Gylfe E Cell Calcium; 2000 Jan; 27(1):43-51. PubMed ID: 10726210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]