These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 8206149)

  • 41. Effects of Dimethyl Sulfoxide on Surface Water near Phospholipid Bilayers.
    Lee Y; Pincus PA; Hyeon C
    Biophys J; 2016 Dec; 111(11):2481-2491. PubMed ID: 27926849
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chemically induced phospholipid translocation across biological membranes.
    Gurtovenko AA; Onike OI; Anwar J
    Langmuir; 2008 Sep; 24(17):9656-60. PubMed ID: 18680319
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent advances in membrane cholesterol domain dynamics and intracellular cholesterol trafficking.
    Schroeder F; Frolov AA; Murphy EJ; Atshaves BP; Jefferson JR; Pu L; Wood WG; Foxworth WB; Kier AB
    Proc Soc Exp Biol Med; 1996 Nov; 213(2):150-77. PubMed ID: 8931661
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Capturing the nanoscale complexity of cellular membranes in supported lipid bilayers.
    Kam LC
    J Struct Biol; 2009 Oct; 168(1):3-10. PubMed ID: 19500676
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fluid flow beneath a semipermeable membrane during drying processes.
    Blount MJ; Miksis MJ; Davis SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016330. PubMed ID: 22400680
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interfacial water molecules at biological membranes: Structural features and role for lateral proton diffusion.
    Nguyen TH; Zhang C; Weichselbaum E; Knyazev DG; Pohl P; Carloni P
    PLoS One; 2018; 13(2):e0193454. PubMed ID: 29474432
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study.
    Saito H; Shinoda W
    J Phys Chem B; 2011 Dec; 115(51):15241-50. PubMed ID: 22081997
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transport of the anti-cancer drug doxorubicin across cytoplasmic membranes and membranes composed of phospholipids derived from Escherichia coli occurs via a similar mechanism.
    Speelmans G; Staffhorst RW; Steenbergen HG; de Kruijff B
    Biochim Biophys Acta; 1996 Oct; 1284(2):240-6. PubMed ID: 8914590
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transbilayer organization of membrane cholesterol at low concentrations: Implications in health and disease.
    Chaudhuri A; Chattopadhyay A
    Biochim Biophys Acta; 2011 Jan; 1808(1):19-25. PubMed ID: 21035427
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular dynamics simulations of phospholipid bilayers with cholesterol.
    Hofsäss C; Lindahl E; Edholm O
    Biophys J; 2003 Apr; 84(4):2192-206. PubMed ID: 12668428
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A molecular-dynamics study of lipid bilayers: effects of the hydrocarbon chain length on permeability.
    Sugii T; Takagi S; Matsumoto Y
    J Chem Phys; 2005 Nov; 123(18):184714. PubMed ID: 16292928
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonequilibrium behavior in supported lipid membranes containing cholesterol.
    Stottrup BL; Veatch SL; Keller SL
    Biophys J; 2004 May; 86(5):2942-50. PubMed ID: 15111410
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure-activity relationships of the antimicrobial peptide gramicidin S and its analogs: aqueous solubility, self-association, conformation, antimicrobial activity and interaction with model lipid membranes.
    Abraham T; Prenner EJ; Lewis RN; Mant CT; Keller S; Hodges RS; McElhaney RN
    Biochim Biophys Acta; 2014 May; 1838(5):1420-9. PubMed ID: 24388950
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly selective water channel activity measured by voltage clamp: analysis of planar lipid bilayers reconstituted with purified AqpZ.
    Pohl P; Saparov SM; Borgnia MJ; Agre P
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9624-9. PubMed ID: 11493683
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The mobility of a fluorescent ubiquinone in model lipid membranes. Relevance to mitochondrial electron transport.
    Chazotte B; Wu ES; Hackenbrock CR
    Biochim Biophys Acta; 1991 Jul; 1058(3):400-9. PubMed ID: 2065063
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aggregation and dynamics of oligocholate transporters in phospholipid bilayers revealed by solid-state NMR spectroscopy.
    Wang T; Widanapathirana L; Zhao Y; Hong M
    Langmuir; 2012 Dec; 28(49):17071-8. PubMed ID: 23153411
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Physicochemical mechanisms of organic acid transport in the apical membrane vesicles of the cells of proximal kidney tubules in rats. II. Kinetic parameters of transport and phase state of the lipid bilayer in mutant Campbell strain rats].
    Bresler VM; Isaev-Ivanova VV; Kazbekov EN; Kleĭner AR; Orlov IuN
    Tsitologiia; 1988 Mar; 30(3):283-90. PubMed ID: 2842901
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facilitated and Non-Gaussian Diffusion of Cholesterol in Liquid Ordered Phase Bilayers Depends on the Flip-Flop and Spatial Arrangement of Cholesterol.
    Oh Y; Sung BJ
    J Phys Chem Lett; 2018 Nov; 9(22):6529-6535. PubMed ID: 30346769
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Solute transport on the sub 100 ms scale across the lipid bilayer membrane of individual proteoliposomes.
    Ohlsson G; Tabaei SR; Beech J; Kvassman J; Johanson U; Kjellbom P; Tegenfeldt JO; Höök F
    Lab Chip; 2012 Nov; 12(22):4635-43. PubMed ID: 22895529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.