These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8206313)

  • 1. Sodium-dependent nucleobase transport in brush-border membrane vesicles from guinea pig kidney.
    Griffith DA; Jarvis SM
    Biochem Soc Trans; 1994 Feb; 22(1):81S. PubMed ID: 8206313
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of a sodium-dependent concentrative nucleobase-transport system in guinea-pig kidney cortex brush-border membrane vesicles.
    Griffith DA; Jarvis SM
    Biochem J; 1994 Nov; 303 ( Pt 3)(Pt 3):901-5. PubMed ID: 7980460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-dependent succinate transport in renal outer cortical brush border membrane vesicles.
    Fukuhara Y; Turner RJ
    Am J Physiol; 1983 Sep; 245(3):F374-81. PubMed ID: 6225342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of L-arginine in brush border vesicles derived from rabbit kidney cortex.
    Busse D
    Arch Biochem Biophys; 1978 Dec; 191(2):551-60. PubMed ID: 742890
    [No Abstract]   [Full Text] [Related]  

  • 5. Characterization of sodium-dependent and sodium-independent nucleoside transport systems in rabbit brush-border and basolateral plasma-membrane vesicles from the renal outer cortex.
    Williams TC; Doherty AJ; Griffith DA; Jarvis SM
    Biochem J; 1989 Nov; 264(1):223-31. PubMed ID: 2604712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloride dependence of the sodium-dependent glycine transport in pig kidney cortex brush-border membrane vesicles.
    Scalera V; Corcelli A; Frassanito A; Storelli C
    Biochim Biophys Acta; 1987 Sep; 903(1):1-10. PubMed ID: 3651446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gamma-aminobutyric acid-specific transport mechanism in mammalian kidney.
    Goodyer PR; Rozen R; Scriver CR
    Biochim Biophys Acta; 1985 Aug; 818(1):45-54. PubMed ID: 3925996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxanthine transport in the guinea pig and human placenta is a carrier-mediated process that does not involve nucleoside transporters.
    Barros LF
    Am J Obstet Gynecol; 1994 Jul; 171(1):111-7. PubMed ID: 8030685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+-dependent, potential-sensitive L-ascorbate transport across brush border membrane vesicles from kidney cortex.
    Toggenburger G; Häusermann M; Mütsch B; Genoni G; Kessler M; Weber F; Hornig D; O'Neill B; Semenza G
    Biochim Biophys Acta; 1981 Sep; 646(3):433-43. PubMed ID: 7284371
    [No Abstract]   [Full Text] [Related]  

  • 10. Sodium uptake mechanisms in brush-border membrane vesicles prepared from rabbit renal cortex.
    Warnock DG; Yee VJ
    Biochim Biophys Acta; 1982 Jan; 684(1):137-40. PubMed ID: 7055550
    [No Abstract]   [Full Text] [Related]  

  • 11. Thiamine transport in the brush border membrane vesicles of the guinea-pig jejunum.
    Hayashi K; Yoshida S; Kawasaki T
    Biochim Biophys Acta; 1981 Feb; 641(1):106-13. PubMed ID: 6260179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some characteristics of kidney Na+ -dependent glucose carrier reconstituted into sonicated liposomes.
    Crane RK; Malathi P; Preiser H; Fairclough P
    Am J Physiol; 1978 Jan; 234(1):E1-5. PubMed ID: 623242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycine uptake in pig kidney cortex brush-border membrane vesicles: effect of Cl-.
    Corcelli A; Scalera V; Storelli C
    Ann N Y Acad Sci; 1985; 456():124-6. PubMed ID: 3867305
    [No Abstract]   [Full Text] [Related]  

  • 14. Sulphate-ion/sodium-ion co-transport by brush-border membrane vesicles isolated from rat kidney cortex.
    Lücke H; Stange G; Murer H
    Biochem J; 1979 Jul; 182(1):223-9. PubMed ID: 91368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased Na+-gradient-dependent D-glucose transport in brush-border membrane vesicles from rabbits with experimental Fanconi syndrome.
    Yanase M; Orita Y; Okada N; Nakanishi T; Horio M; Ando A; Abe H
    Biochim Biophys Acta; 1983 Aug; 733(1):95-101. PubMed ID: 6882758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+-dependent, electroneutral L-ascorbate transport across brush border membrane vesicles from guinea pig small intestine.
    Siliprandi L; Vanni P; Kessler M; Semenza G
    Biochim Biophys Acta; 1979 Mar; 552(1):129-42. PubMed ID: 435492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotin uptake mechanisms in brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex.
    Podevin RA; Barbarat B
    Biochim Biophys Acta; 1986 Apr; 856(3):471-81. PubMed ID: 3964692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for sodium-dependent hypoxanthine uptake in isolated guinea pig ventricular myocytes: stimulation by extracellular Ni2+.
    Haddock PS
    Cardiovasc Res; 1995 Jul; 30(1):130-7. PubMed ID: 7553715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High affinity sodium-dependent nucleobase transport in cultured renal epithelial cells (LLC-PK1).
    Griffith DA; Jarvis SM
    J Biol Chem; 1993 Sep; 268(27):20085-90. PubMed ID: 8376366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of parathyroid hormone (PTH) and dietary phosphate on the sodium-dependent phosphate transport system located in the rat renal brush border membrane.
    Murer H; Evers C; Stoll R; Kinne R
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():455-62. PubMed ID: 211000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.