BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8206790)

  • 1. Regional differences in glucose transport in the mouse hippocampus.
    Shimada M; Kawamoto S; Hirose Y; Nakanishi M; Watanabe H; Watanabe M
    Histochem J; 1994 Mar; 26(3):207-12. PubMed ID: 8206790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices.
    Jakoby P; Schmidt E; Ruminot I; Gutiérrez R; Barros LF; Deitmer JW
    Cereb Cortex; 2014 Jan; 24(1):222-31. PubMed ID: 23042735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy.
    Loaiza A; Porras OH; Barros LF
    J Neurosci; 2003 Aug; 23(19):7337-42. PubMed ID: 12917367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose metabolism down-regulates the uptake of 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (6-NBDG) mediated by glucose transporter 1 isoform (GLUT1): theory and simulations using the symmetric four-state carrier model.
    DiNuzzo M; Giove F; Maraviglia B; Mangia S
    J Neurochem; 2013 Apr; 125(2):236-46. PubMed ID: 23336592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorometric determination of glucose utilization in neurons in vitro and in vivo.
    Itoh Y; Abe T; Takaoka R; Tanahashi N
    J Cereb Blood Flow Metab; 2004 Sep; 24(9):993-1003. PubMed ID: 15356420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Imaging of Glucose Metabolism for Intraoperative Fluorescence Guidance During Glioma Surgery.
    Belykh E; Jubran JH; George LL; Bardonova L; Healey DR; Georges JF; Quarles CC; Eschbacher JM; Mehta S; Scheck AC; Nakaji P; Preul MC
    Mol Imaging Biol; 2021 Aug; 23(4):586-596. PubMed ID: 33544308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorescence method for measurement of glucose transport in kidney cells.
    Blodgett AB; Kothinti RK; Kamyshko I; Petering DH; Kumar S; Tabatabai NM
    Diabetes Technol Ther; 2011 Jul; 13(7):743-51. PubMed ID: 21510766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli.
    Yoshioka K; Takahashi H; Homma T; Saito M; Oh KB; Nemoto Y; Matsuoka H
    Biochim Biophys Acta; 1996 Feb; 1289(1):5-9. PubMed ID: 8605231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG.
    Chang HC; Yang SF; Huang CC; Lin TS; Liang PH; Lin CJ; Hsu LC
    Mol Biosyst; 2013 Aug; 9(8):2010-20. PubMed ID: 23657801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenosine A2B receptor activation stimulates glucose uptake in the mouse forebrain.
    Lemos C; Pinheiro BS; Beleza RO; Marques JM; Rodrigues RJ; Cunha RA; Rial D; Köfalvi A
    Purinergic Signal; 2015 Dec; 11(4):561-9. PubMed ID: 26446689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A real-time method of imaging glucose uptake in single, living mammalian cells.
    Yamada K; Saito M; Matsuoka H; Inagaki N
    Nat Protoc; 2007; 2(3):753-62. PubMed ID: 17406637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular binding and uptake of fluorescent glucose analogs 2-NBDG and 6-NBDG occurs independent of membrane glucose transporters.
    Hamilton KE; Bouwer MF; Louters LL; Looyenga BD
    Biochimie; 2021 Nov; 190():1-11. PubMed ID: 34224807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analog.
    Lloyd PG; Hardin CD; Sturek M
    Physiol Res; 1999; 48(6):401-10. PubMed ID: 10783904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel use of fluorescent glucose analogues to identify a new class of triazine-based insulin mimetics possessing useful secondary effects.
    Jung DW; Ha HH; Zheng X; Chang YT; Williams DR
    Mol Biosyst; 2011 Feb; 7(2):346-58. PubMed ID: 20927436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Syntheses of 2-NBDG analogues for monitoring stereoselective uptake of D-glucose.
    Yamamoto T; Tanaka S; Suga S; Watanabe S; Nagatomo K; Sasaki A; Nishiuchi Y; Teshima T; Yamada K
    Bioorg Med Chem Lett; 2011 Jul; 21(13):4088-96. PubMed ID: 21636274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aberrant Uptake of a Fluorescent L-Glucose Analogue (fLG) into Tumor Cells Expressing Malignant Phenotypes.
    Yamada K
    Biol Pharm Bull; 2018; 41(10):1508-1516. PubMed ID: 30270319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog.
    Tsytsarev V; Maslov KI; Yao J; Parameswar AR; Demchenko AV; Wang LV
    J Neurosci Methods; 2012 Jan; 203(1):136-40. PubMed ID: 21939688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid viability assessment of yeast cells using vital staining with 2-NBDG, a fluorescent derivative of glucose.
    Oh KB; Matsuoka H
    Int J Food Microbiol; 2002 Jun; 76(1-2):47-53. PubMed ID: 12038577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose, a new fluorescent derivative of glucose, for viability assessment of yeast Candida albicans.
    Yoshioka K; Oh KB; Saito M; Nemoto Y; Matsuoka H
    Appl Microbiol Biotechnol; 1996 Nov; 46(4):400-4. PubMed ID: 8987729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric transport of a fluorescent glucose analogue by human erythrocytes.
    Speizer L; Haugland R; Kutchai H
    Biochim Biophys Acta; 1985 Apr; 815(1):75-84. PubMed ID: 4039191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.