These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 820682)

  • 1. Incorporation of deoxycytidine into deoxyribonucleic acid deoxycytidylate in Lactobacillus acidophilus R-26.
    Davis MT; Ives DH
    J Bacteriol; 1976 Jun; 126(3):1136-40. PubMed ID: 820682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
    Katahira R; Ashihara H
    Planta; 2002 Sep; 215(5):821-8. PubMed ID: 12244448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Participation of exogenous thymine and thymidine in deoxyribonucleic acid synthesis in Lactobacillus acidophilus.
    Sawula RV; Zamenhof S; Zamenhof PJ
    Can J Microbiol; 1975 Apr; 21(4):501-9. PubMed ID: 123477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the regulation of a bacterial deoxycytidylate deaminase.
    Sergott RC; Debeer LJ; Bessman MJ
    J Biol Chem; 1971 Dec; 246(24):7755-8. PubMed ID: 5002683
    [No Abstract]   [Full Text] [Related]  

  • 5. Labelling of the thymidine and deoxycytidine bases of DNA by [2-14C]deoxycytidine in cultured L1210 cells.
    Karle JM; Hoerauf RM; Cysyk RL
    Cancer Lett; 1983 Jun; 19(2):147-57. PubMed ID: 6883305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amber mutants of bacteriophage T4 defective in deoxycytidine diphosphatase and deoxycytidine triphosphatase. On the role of 5-hydroxymethylcytosine in bacteriophage deoxyribonucleic acid.
    Wiberg JS
    J Biol Chem; 1967 Dec; 242(24):5824-9. PubMed ID: 4319673
    [No Abstract]   [Full Text] [Related]  

  • 7. Lactobacillus exonuclease mutants: selection of mutants with altered ability to utilize deoxyribonucleotides.
    Hotchkiss RD; Nozawa R; Gabor M
    Proc Natl Acad Sci U S A; 1971 Nov; 68(11):2866-9. PubMed ID: 5001398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The metabolism of deoxyribonucleosides in Lactobacillus acidophilus: regulation of deoxyadenosine, deoxycytidine, deoxyguanosine and deoxythymidine kinase activ-ties by nucleotides.
    Durham JP; Ives DH
    Biochim Biophys Acta; 1971 Jan; 228(1):9-25. PubMed ID: 4993728
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies of deoxyribonucleic acid synthesis and cell growth in the deoxyriboside-requiring bacteria, Lactobacillus acidophilus. III. Identification of thymidine diphosphate rhamnose.
    OKAZAKI R
    Biochim Biophys Acta; 1960 Nov; 44():478-90. PubMed ID: 13730590
    [No Abstract]   [Full Text] [Related]  

  • 10. Lack of specific correlation of the deoxycytidine triphosphate pool level with rate of DNA synthesis.
    Walters RA; Ratliff RL
    Biochim Biophys Acta; 1975 Dec; 414(3):221-30. PubMed ID: 1203255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of deoxynucleotide metabolism by the deoxycytidylate deaminase inhibitor 3,4,5,6-tetrahydrodeoxyuridine.
    Heinemann V; Plunkett W
    Biochem Pharmacol; 1989 Nov; 38(22):4115-21. PubMed ID: 2688654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide interconversions. III. The incorporation in vitro of deoxycytidylate into the deoxycytidine and thymidine of deoxyribonucleic acid.
    MALEY GF; MALEY F
    J Biol Chem; 1961 Jun; 236():1806-9. PubMed ID: 13765765
    [No Abstract]   [Full Text] [Related]  

  • 13. Heat-induced deamination of cytosine residues in deoxyribonucleic acid.
    Lindahl T; Nyberg B
    Biochemistry; 1974 Jul; 13(16):3405-10. PubMed ID: 4601435
    [No Abstract]   [Full Text] [Related]  

  • 14. Growth of Lactobacillus bulgaricus in milk. 2. Characteristics of purine nucleotides, pyrimidine nucleotides, and nucleic acid synthesis.
    Suzuki I; Kato S; Kitada T; Yano N; Morichi T
    J Dairy Sci; 1986 Apr; 69(4):971-8. PubMed ID: 2424954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA synthesis by Lactobacillus acidophilus during glutamic acid starvation.
    Reich J; Koukalová B; Soska J
    Folia Microbiol (Praha); 1967; 12(6):529-36. PubMed ID: 4965920
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulation of pyrimidine deoxyribonucleotide metabolism by substrate cycles in dCMP deaminase-deficient V79 hamster cells.
    Bianchi V; Pontis E; Reichard P
    Mol Cell Biol; 1987 Dec; 7(12):4218-24. PubMed ID: 3437888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The determination of low ribonucleotide reductase activity in plant extracts.
    Hovemann B; Follmann H
    Anal Biochem; 1977 May; 79(1-2):119-28. PubMed ID: 301361
    [No Abstract]   [Full Text] [Related]  

  • 18. Utilization of pyrimidines and pyrimidine deoxynucleosides by Thermobacterium acidophilum (Lactobacillus acidophilus).
    LOVTRUP S; SHUGAR D
    J Bacteriol; 1961 Nov; 82(5):623-31. PubMed ID: 14466913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of two growth stage-dependent deoxyribonucleic acid polymerases from Lactobacillus acidophilus.
    Goodman MF; Bessman MJ
    J Biol Chem; 1973 Feb; 248(3):815-21. PubMed ID: 4630855
    [No Abstract]   [Full Text] [Related]  

  • 20. Selective utilization of pyrimidine deoxyribonucleosides for deoxyribonucleic acid synthesis in pneumococcus.
    Bean B; Tomasz A
    J Bacteriol; 1973 Mar; 113(3):1356-62. PubMed ID: 4144169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.