These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8206871)

  • 1. Changes in SH reactivity of the protein in porcine intestinal brush-border membranes associated with lipid peroxidation.
    Ohyashiki T; Sakata N; Matsui K
    J Biochem; 1994 Feb; 115(2):224-9. PubMed ID: 8206871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase of the molecular rigidity of the protein conformation in the intestinal brush-border membranes by lipid peroxidation.
    Ohyashiki T; Ohtsuka T; Mohri T
    Biochim Biophys Acta; 1988 Apr; 939(2):383-92. PubMed ID: 3355823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study on peroxidative damage of the porcine intestinal brush-border membranes using a fluorogenic thiol reagent, N-(1-pyrene)maleimide.
    Ohyashiki T; Sakata N; Kamata K; Matsui K
    Biochim Biophys Acta; 1991 Aug; 1067(2):159-65. PubMed ID: 1878370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of lipid peroxidation on membrane-bound Ca2+-ATPase activity of the intestinal brush-border membranes.
    Ohta A; Mohri T; Ohyashiki T
    Biochim Biophys Acta; 1989 Sep; 984(2):151-7. PubMed ID: 2527563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of Ca(2+)-induced aggregation of porcine intestinal brush-border membranes by lipid peroxidation.
    Ohyashiki T; Takino T; Matsui K
    J Biochem; 1994 Aug; 116(2):351-6. PubMed ID: 7822254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A decrease of lipid fluidity of the porcine intestinal brush-border membranes by treatment with malondialdehyde.
    Ohyashiki T; Sakata N; Matsui K
    J Biochem; 1992 Mar; 111(3):419-23. PubMed ID: 1587807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence characteristics of peroxidation products in porcine intestinal brush-border membranes.
    Ohyashiki T; Sakata N; Mohri T; Matsui K
    Arch Biochem Biophys; 1991 Feb; 284(2):375-80. PubMed ID: 1989521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the fluorescence parameters of bound N-(1-pyrene) maleimide by lipid peroxidation of intestinal brush-border membranes.
    Ohyashiki T; Yamamoto T; Mohri T
    Biochim Biophys Acta; 1989 Jun; 981(2):235-42. PubMed ID: 2730902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of ionic strength on the protein conformation and the fluidity of porcine intestinal brush border membranes. Fluorometric studies using N-[7-dimethylamino-4-methylcoumarinyl]maleimide and pyrene.
    Ohyashiki T; Taka M; Mohri T
    J Biol Chem; 1985 Jun; 260(11):6857-61. PubMed ID: 3997850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-induced transitions of porcine intestinal brush border membranes.
    Ohyashiki T; Takeuchi M; Kodera M; Mohri T
    Biochim Biophys Acta; 1982 May; 688(1):16-22. PubMed ID: 7093271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of lipid peroxidation on surface charge density of the porcine intestinal brush-border membranes.
    Ohyashiki T; Adachi R; Matsui K
    Biol Pharm Bull; 1993 Jan; 16(1):17-21. PubMed ID: 8369745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity of sulfhydryl groups in the brush-border membranes of chick duodena is increased by 1,25-dihydroxycholecalciferol.
    Mykkanen HM; Wasserman RH
    Biochim Biophys Acta; 1990 Mar; 1033(3):282-6. PubMed ID: 2317503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the fluorescence characteristics of N-(1-pyrene) maleimide bound to the intestinal brush-border membranes by neuraminidase treatment.
    Ohyashiki T; Taka M; Mohri T
    Chem Pharm Bull (Tokyo); 1989 Aug; 37(8):2165-9. PubMed ID: 2598317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A change in the lipid fluidity of the porcine intestinal brush-border membranes by lipid peroxidation. Studies using pyrene and fluorescent stearic acid derivatives.
    Ohyashiki T; Ohtsuka T; Mohri T
    Biochim Biophys Acta; 1986 Oct; 861(2):311-8. PubMed ID: 3756162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of alpha-tocopherol on the lipid peroxidation and fluidity of porcine intestinal brush-border membranes.
    Ohyashiki T; Ushiro H; Mohri T
    Biochim Biophys Acta; 1986 Jun; 858(2):294-300. PubMed ID: 3718979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of neuraminidase treatment on the lipid fluidity of the intestinal brush-border membranes.
    Ohyashiki T; Taka M; Mohri T
    Biochim Biophys Acta; 1987 Nov; 905(1):57-64. PubMed ID: 3676314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-lipid interactions in human small intestinal brush-border membranes.
    Dudeja PK; Harig JM; Ramaswamy K; Brasitus TA
    Am J Physiol; 1989 Nov; 257(5 Pt 1):G809-17. PubMed ID: 2596611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen radical-induced inhibition of alkaline phosphatase activity in reconstituted membranes.
    Ohyashiki T; Kumada Y; Hatanaka N; Matsui K
    Arch Biochem Biophys; 1994 Sep; 313(2):310-7. PubMed ID: 8080278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluidity and composition of brush border and basolateral membranes from rat kidney.
    Hise MK; Mantulin WW; Weinman EJ
    Am J Physiol; 1984 Sep; 247(3 Pt 2):F434-9. PubMed ID: 6089590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship of alcohol-induced changes in Mg(2+)-ATPase activity of rabbit intestinal brush border membrane with changes in fluidity of its lipid bilayer.
    Kitagawa S; Sugaya Y; Nishizawa M; Hirata H
    J Membr Biol; 1995 Jul; 146(2):193-9. PubMed ID: 7473688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.