These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 8206890)
1. Isolation of active recombinant XPG protein, a human DNA repair endonuclease. O'Donovan A; Scherly D; Clarkson SG; Wood RD J Biol Chem; 1994 Jun; 269(23):15965-8. PubMed ID: 8206890 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a putative helix-loop-helix motif in nucleotide excision repair endonuclease, XPG. Park MS; Valdez J; Gurley L; Kim CY J Biol Chem; 1997 Oct; 272(44):27823-9. PubMed ID: 9346928 [TBL] [Abstract][Full Text] [Related]
3. The founding members of xeroderma pigmentosum group G produce XPG protein with severely impaired endonuclease activity. Lalle P; Nouspikel T; Constantinou A; Thorel F; Clarkson SG J Invest Dermatol; 2002 Feb; 118(2):344-51. PubMed ID: 11841555 [TBL] [Abstract][Full Text] [Related]
4. Mutations that disable the DNA repair gene XPG in a xeroderma pigmentosum group G patient. Nouspikel T; Clarkson SG Hum Mol Genet; 1994 Jun; 3(6):963-7. PubMed ID: 7951246 [TBL] [Abstract][Full Text] [Related]
5. Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5. O'Donovan A; Wood RD Nature; 1993 May; 363(6425):185-8. PubMed ID: 8483505 [TBL] [Abstract][Full Text] [Related]
6. XPG protein has a structure-specific endonuclease activity. Cloud KG; Shen B; Strniste GF; Park MS Mutat Res; 1995 Jul; 347(2):55-60. PubMed ID: 7651464 [TBL] [Abstract][Full Text] [Related]
7. Deficiency in the nuclease activity of xeroderma pigmentosum G in mice leads to hypersensitivity to UV irradiation. Tian M; Jones DA; Smith M; Shinkura R; Alt FW Mol Cell Biol; 2004 Mar; 24(6):2237-42. PubMed ID: 14993263 [TBL] [Abstract][Full Text] [Related]
8. XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair. O'Donovan A; Davies AA; Moggs JG; West SC; Wood RD Nature; 1994 Sep; 371(6496):432-5. PubMed ID: 8090225 [TBL] [Abstract][Full Text] [Related]
9. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Sijbers AM; de Laat WL; Ariza RR; Biggerstaff M; Wei YF; Moggs JG; Carter KC; Shell BK; Evans E; de Jong MC; Rademakers S; de Rooij J; Jaspers NG; Hoeijmakers JH; Wood RD Cell; 1996 Sep; 86(5):811-22. PubMed ID: 8797827 [TBL] [Abstract][Full Text] [Related]
10. Xeroderma pigmentosum and molecular cloning of DNA repair genes. Boulikas T Anticancer Res; 1996; 16(2):693-708. PubMed ID: 8687116 [TBL] [Abstract][Full Text] [Related]
11. XPG: its products and biological roles. Schärer OD Adv Exp Med Biol; 2008; 637():83-92. PubMed ID: 19181113 [TBL] [Abstract][Full Text] [Related]
12. Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. Constantinou A; Gunz D; Evans E; Lalle P; Bates PA; Wood RD; Clarkson SG J Biol Chem; 1999 Feb; 274(9):5637-48. PubMed ID: 10026181 [TBL] [Abstract][Full Text] [Related]
13. Novel XPG (ERCC5) mutations affect DNA repair and cell survival after ultraviolet but not oxidative stress. Soltys DT; Rocha CR; Lerner LK; de Souza TA; Munford V; Cabral F; Nardo T; Stefanini M; Sarasin A; Cabral-Neto JB; Menck CF Hum Mutat; 2013 Mar; 34(3):481-9. PubMed ID: 23255472 [TBL] [Abstract][Full Text] [Related]
14. Human xeroderma pigmentosum group G gene encodes a DNA endonuclease. Habraken Y; Sung P; Prakash L; Prakash S Nucleic Acids Res; 1994 Aug; 22(16):3312-6. PubMed ID: 8078765 [TBL] [Abstract][Full Text] [Related]
15. Human XPG nuclease structure, assembly, and activities with insights for neurodegeneration and cancer from pathogenic mutations. Tsutakawa SE; Sarker AH; Ng C; Arvai AS; Shin DS; Shih B; Jiang S; Thwin AC; Tsai MS; Willcox A; Her MZ; Trego KS; Raetz AG; Rosenberg D; Bacolla A; Hammel M; Griffith JD; Cooper PK; Tainer JA Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14127-14138. PubMed ID: 32522879 [TBL] [Abstract][Full Text] [Related]
16. Suppression of UV-induced apoptosis by the human DNA repair protein XPG. Clément V; Dunand-Sauthier I; Clarkson SG Cell Death Differ; 2006 Mar; 13(3):478-88. PubMed ID: 16167068 [TBL] [Abstract][Full Text] [Related]
17. Postnatal growth failure, short life span, and early onset of cellular senescence and subsequent immortalization in mice lacking the xeroderma pigmentosum group G gene. Harada YN; Shiomi N; Koike M; Ikawa M; Okabe M; Hirota S; Kitamura Y; Kitagawa M; Matsunaga T; Nikaido O; Shiomi T Mol Cell Biol; 1999 Mar; 19(3):2366-72. PubMed ID: 10022922 [TBL] [Abstract][Full Text] [Related]
18. DNA repair defect in xeroderma pigmentosum group C and complementing factor from HeLa cells. Shivji MK; Eker AP; Wood RD J Biol Chem; 1994 Sep; 269(36):22749-57. PubMed ID: 8077226 [TBL] [Abstract][Full Text] [Related]
19. A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Nouspikel T; Lalle P; Leadon SA; Cooper PK; Clarkson SG Proc Natl Acad Sci U S A; 1997 Apr; 94(7):3116-21. PubMed ID: 9096355 [TBL] [Abstract][Full Text] [Related]
20. Characterization of three XPG-defective patients identifies three missense mutations that impair repair and transcription. Schäfer A; Schubert S; Gratchev A; Seebode C; Apel A; Laspe P; Hofmann L; Ohlenbusch A; Mori T; Kobayashi N; Schürer A; Schön MP; Emmert S J Invest Dermatol; 2013 Jul; 133(7):1841-9. PubMed ID: 23370536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]