These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8206923)

  • 1. Substrate specificity of the two phosphate transport systems of Acinetobacter johnsonii 210A in relation to phosphate speciation in its aquatic environment.
    van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ
    J Biol Chem; 1994 Jun; 269(23):16212-6. PubMed ID: 8206923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism and energetics of the secondary phosphate transport system of Acinetobacter johnsonii 210A.
    van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ
    J Biol Chem; 1993 Sep; 268(26):19377-83. PubMed ID: 8366084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphate-accumulating Acinetobacter johnsonii strain 210A.
    van Veen HW; Abee T; Kortstee GJ; Pereira H; Konings WN; Zehnder AJ
    J Biol Chem; 1994 Nov; 269(47):29509-14. PubMed ID: 7961934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of two phosphate transport systems in Acinetobacter johnsonii 210A.
    Van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ
    J Bacteriol; 1993 Jan; 175(1):200-6. PubMed ID: 8380151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli.
    van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ
    Biochemistry; 1994 Feb; 33(7):1766-70. PubMed ID: 8110778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate transport in prokaryotes: molecules, mediators and mechanisms.
    van Veen HW
    Antonie Van Leeuwenhoek; 1997 Nov; 72(4):299-315. PubMed ID: 9442271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics of alanine, lysine, and proline transport in cytoplasmic membranes of the polyphosphate-accumulating Acinetobacter johnsonii strain 210A.
    Van Veen HW; Abee T; Kleefsman AW; Melgers B; Kortstee GJ; Konings WN; Zehnder AJ
    J Bacteriol; 1994 May; 176(9):2670-6. PubMed ID: 8169217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for monovalent phosphate transport in Ehrlich ascites tumor cells.
    Bowen JW; Levinson C
    J Cell Physiol; 1983 Aug; 116(2):142-8. PubMed ID: 6863397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of heavy metals and other environmental conditions on the anaerobic phosphate metabolism of Acinetobacter johnsonii.
    Boswell CD; Dick RE; Macaskie LE
    Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1711-1720. PubMed ID: 10439410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of polyphosphatase of Acinetobacter johnsonii 210A.
    Bonting CF; Kortstee GJ; Zehnder AJ
    Antonie Van Leeuwenhoek; 1993; 64(1):75-81. PubMed ID: 8274005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate uptake and release by Acinetobacter johnsonii in continuous culture and coupling of phosphate release to heavy metal accumulation.
    Boswell CD; Dick RE; Eccles H; Macaskie LE
    J Ind Microbiol Biotechnol; 2001 Jun; 26(6):333-40. PubMed ID: 11571615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Cations in Accumulation and Release of Phosphate by Acinetobacter Strain 210A.
    van Groenestijn JW; Vlekke GJ; Anink DM; Deinema MH; Zehnder AJ
    Appl Environ Microbiol; 1988 Dec; 54(12):2894-901. PubMed ID: 16347788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of cytochrome c oxidase-driven H(+)-coupled phosphate transport catalyzed by the Saccharomyces cerevisiae Pho84 permease in coreconstituted vesicles.
    Fristedt U; van Der Rest M; Poolman B; Konings WN; Persson BL
    Biochemistry; 1999 Nov; 38(48):16010-5. PubMed ID: 10625469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating a back door mechanism of actin phosphate release by steered molecular dynamics.
    Wriggers W; Schulten K
    Proteins; 1999 May; 35(2):262-73. PubMed ID: 10223297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of Streptococcus lactis phosphate transport on internal phosphate concentration and internal pH.
    Poolman B; Nijssen RM; Konings WN
    J Bacteriol; 1987 Dec; 169(12):5373-8. PubMed ID: 3119562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of an integral protein of the brush border membrane mediating the transport of divalent metal ions.
    Knöpfel M; Schulthess G; Funk F; Hauser H
    Biophys J; 2000 Aug; 79(2):874-84. PubMed ID: 10920019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divalent metal is required for both phosphate transport and phosphate binding to phosphorin, a proteolipid isolated from brush-border membrane vesicles.
    Kessler RJ; Vaughn DA
    J Biol Chem; 1984 Jul; 259(14):9059-63. PubMed ID: 6430895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate transport in intestinal brush-border membrane vesicles: effect of pH and dietary phosphate.
    Quamme GA
    Am J Physiol; 1985 Aug; 249(2 Pt 1):G168-76. PubMed ID: 4025545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-Mg/Pi carrier activity in rat liver mitochondria.
    Nosek MT; Aprille JR
    Arch Biochem Biophys; 1992 Aug; 296(2):691-7. PubMed ID: 1632654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of substrates and pH on the intestinal Na+/phosphate cotransporter: evidence for an intervesicular divalent phosphate allosteric regulatory site.
    Peerce BE
    Biochim Biophys Acta; 1995 Oct; 1239(1):1-10. PubMed ID: 7548137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.