These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 8206923)
21. Characterization of a Pi transport system in cartilage matrix vesicles. Potential role in the calcification process. Montessuit C; Caverzasio J; Bonjour JP J Biol Chem; 1991 Sep; 266(27):17791-7. PubMed ID: 1833387 [TBL] [Abstract][Full Text] [Related]
22. The ATP-Mg/Pi carrier of rat liver mitochondria catalyzes a divalent electroneutral exchange. Joyal JL; Aprille JR J Biol Chem; 1992 Sep; 267(27):19198-203. PubMed ID: 1527042 [TBL] [Abstract][Full Text] [Related]
23. Biology of polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal. Kortstee GJ; Appeldoorn KJ; Bonting CF; van Niel EW; van Veen HW FEMS Microbiol Rev; 1994 Oct; 15(2-3):137-53. PubMed ID: 7946465 [TBL] [Abstract][Full Text] [Related]
24. Sodium-dependent transport of phosphate in LLC-PK1 cells. Biber J; Brown CD; Murer H Biochim Biophys Acta; 1983 Nov; 735(3):325-30. PubMed ID: 6639944 [TBL] [Abstract][Full Text] [Related]
25. Accumulation of ambient phosphate into the periplasm of marine bacteria is proton motive force dependent. Kamennaya NA; Geraki K; Scanlan DJ; Zubkov MV Nat Commun; 2020 May; 11(1):2642. PubMed ID: 32457313 [TBL] [Abstract][Full Text] [Related]
26. Solubilization and reconstitution of the renal phosphate transporter. Schäli C; Fanestil DD Biochim Biophys Acta; 1985 Sep; 819(1):66-74. PubMed ID: 4041452 [TBL] [Abstract][Full Text] [Related]
27. Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter. Goswami T; Bhattacharjee A; Babal P; Searle S; Moore E; Li M; Blackwell JM Biochem J; 2001 Mar; 354(Pt 3):511-9. PubMed ID: 11237855 [TBL] [Abstract][Full Text] [Related]
28. Purification and properties of pyrophosphatase of Acinetobacter johnsonii 210A and its involvement in the degradation of polyphosphate. Bonting CF; Gerards R; Zehnder AJ; Kortstee GJ Biodegradation; 1999; 10(6):393-8. PubMed ID: 11068824 [TBL] [Abstract][Full Text] [Related]
29. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics. Akhtar MS; Oki Y; Adachi T J Integr Plant Biol; 2009 Nov; 51(11):1024-39. PubMed ID: 19903224 [TBL] [Abstract][Full Text] [Related]
30. Influence of environmental parameters on polyphosphate accumulation in Acinetobacter sp. van Groenestijn JW; Zuidema M; van de Worp JJ; Deinema MH; Zehnder AJ Antonie Van Leeuwenhoek; 1989; 55(1):67-82. PubMed ID: 2742368 [TBL] [Abstract][Full Text] [Related]
31. Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa). Virkki LV; Forster IC; Biber J; Murer H Am J Physiol Renal Physiol; 2005 May; 288(5):F969-81. PubMed ID: 15613617 [TBL] [Abstract][Full Text] [Related]
32. Effects of Mg2+ and ATP on the phosphate transporter of sarcoplasmic reticulum. Stefanova HI; Jane SD; East JM; Lee AG Biochim Biophys Acta; 1991 May; 1064(2):329-34. PubMed ID: 1645201 [TBL] [Abstract][Full Text] [Related]
33. Reconstitution of the phosphoglycerate transport protein of Salmonella typhimurium. Varadhachary A; Maloney PC J Biol Chem; 1991 Jan; 266(1):130-5. PubMed ID: 1985888 [TBL] [Abstract][Full Text] [Related]
34. Effect of pH on the kinetics of Na+-dependent phosphate transport in rat renal brush-border membranes. Bindels RJ; van den Broek LA; van Os CH Biochim Biophys Acta; 1987 Feb; 897(1):83-92. PubMed ID: 3099845 [TBL] [Abstract][Full Text] [Related]
35. Polyphosphate synthetic activity of polyphosphate:AMP phosphotransferase in Acinetobacter johnsonii 210A. Itoh H; Shiba T J Bacteriol; 2004 Aug; 186(15):5178-81. PubMed ID: 15262957 [TBL] [Abstract][Full Text] [Related]
36. Promiscuity comes at a price: catalytic versatility vs efficiency in different metal ion derivatives of the potential bioremediator GpdQ. Daumann LJ; McCarthy BY; Hadler KS; Murray TP; Gahan LR; Larrabee JA; Ollis DL; Schenk G Biochim Biophys Acta; 2013 Jan; 1834(1):425-32. PubMed ID: 22366468 [TBL] [Abstract][Full Text] [Related]
37. Effect of pH on phosphate transport into intestinal brush-border membrane vesicles. Danisi G; Murer H; Straub RW Am J Physiol; 1984 Feb; 246(2 Pt 1):G180-6. PubMed ID: 6320675 [TBL] [Abstract][Full Text] [Related]
38. Transport characteristics of a murine renal Na/Pi-cotransporter. Hartmann CM; Wagner CA; Busch AE; Markovich D; Biber J; Lang F; Murer H Pflugers Arch; 1995 Sep; 430(5):830-6. PubMed ID: 7478940 [TBL] [Abstract][Full Text] [Related]
39. Phosphate transport via Na+ -Pi cotransport and anion exchange in lactating rat mammary tissue. Shillingford JM; Calvert DT; Beechey RB; Shennan DB Exp Physiol; 1996 Mar; 81(2):273-84. PubMed ID: 8845141 [TBL] [Abstract][Full Text] [Related]
40. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles. Park K; Kim KR; Kim JY; Park YS Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]