BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 8207124)

  • 1. Quantitative analyses of neuroepithelial cell shapes during bending of the mouse neural plate.
    Smith JL; Schoenwolf GC; Quan J
    J Comp Neurol; 1994 Apr; 342(1):144-51. PubMed ID: 8207124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further evidence of extrinsic forces in bending of the neural plate.
    Smith JL; Schoenwolf GC
    J Comp Neurol; 1991 May; 307(2):225-36. PubMed ID: 1856324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation.
    Smith JL; Schoenwolf GC
    J Exp Zool; 1989 Apr; 250(1):49-62. PubMed ID: 2723610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell cycle and neuroepithelial cell shape during bending of the chick neural plate.
    Smith JL; Schoenwolf GC
    Anat Rec; 1987 Jun; 218(2):196-206. PubMed ID: 3619087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reexamination of the role of microfilaments in neurulation in the chick embryo.
    Schoenwolf GC; Folsom D; Moe A
    Anat Rec; 1988 Jan; 220(1):87-102. PubMed ID: 3348489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of nonrandomly oriented cell division in shaping and bending of the neural plate.
    Sausedo RA; Smith JL; Schoenwolf GC
    J Comp Neurol; 1997 May; 381(4):473-88. PubMed ID: 9136804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphometric analyses of changes in cell shape in the neuroepithelium of mammalian embryos.
    Moore DC; Stanisstreet M; Evans GE
    J Anat; 1987 Dec; 155():87-99. PubMed ID: 3503056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bending of the neural plate during mouse spinal neurulation is independent of actin microfilaments.
    Ybot-Gonzalez P; Copp AJ
    Dev Dyn; 1999 Jul; 215(3):273-83. PubMed ID: 10398537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analyses of changes in cell shapes during bending of the avian neural plate.
    Schoenwolf GC; Franks MV
    Dev Biol; 1984 Oct; 105(2):257-72. PubMed ID: 6479439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog.
    Pringle NP; Yu WP; Guthrie S; Roelink H; Lumsden A; Peterson AC; Richardson WD
    Dev Biol; 1996 Jul; 177(1):30-42. PubMed ID: 8660874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microsurgical analyses of avian neurulation: separation of medial and lateral tissues.
    Schoenwolf GC
    J Comp Neurol; 1988 Oct; 276(4):498-507. PubMed ID: 3198787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine structural aspects of the cranial neuroepithelium in early embryos of the rhesus monkey.
    Wilson DB; Hendrickx AG
    J Craniofac Genet Dev Biol; 1984; 4(2):85-94. PubMed ID: 6746879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphogenesis of the murine node and notochordal plate.
    Sulik K; Dehart DB; Iangaki T; Carson JL; Vrablic T; Gesteland K; Schoenwolf GC
    Dev Dyn; 1994 Nov; 201(3):260-78. PubMed ID: 7881129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organelle distribution in the wedge-, spindle- and inverted wedge-shaped neuroepithelial cells during chick embryo neurulation.
    Fernandez JG; Chamorro CA; Paz P; Villar JM
    Acta Morphol Hung; 1988; 36(3-4):203-13. PubMed ID: 3151539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of cell-cycle in regulating neuroepithelial cell shape during bending of the chick neural plate.
    Smith JL; Schoenwolf GC
    Cell Tissue Res; 1988 Jun; 252(3):491-500. PubMed ID: 3396052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative model of epithelial shaping and bending during avian neurulation: autonomous movements of the neural plate, autonomous movements of the epidermis, and interactions in the neural plate/epidermis transition zone.
    Moury JD; Schoenwolf GC
    Dev Dyn; 1995 Nov; 204(3):323-37. PubMed ID: 8573723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure--remodeling of the neuroepithelium prior to neurogenesis.
    Aaku-Saraste E; Hellwig A; Huttner WB
    Dev Biol; 1996 Dec; 180(2):664-79. PubMed ID: 8954735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of neurepithelial cell rearrangement during avian neurulation are determined prior to notochordal inductive interactions.
    Alvarez IS; Schoenwolf GC
    Dev Biol; 1991 Jan; 143(1):78-92. PubMed ID: 1985025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the mechanisms of neurulation in the chick: interrelationship of contractile proteins, microfilaments, and the shape of neuroepithelial cells.
    Lee HY; Nagele RG
    J Exp Zool; 1985 Aug; 235(2):205-15. PubMed ID: 3903030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the mechanisms of neurulation in the chick: morphometric analysis of force distribution within the neuroepithelium during neural tube formation.
    Nagele RG; Hunter E; Bush K; Lee HY
    J Exp Zool; 1987 Dec; 244(3):425-36. PubMed ID: 3443831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.