BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 820833)

  • 1. Methionine degradation by Pseudomonas fluorescens UK1 and its methionine-utilizing mutant.
    Laakso S; Söderling E; Nurmikko V
    J Gen Microbiol; 1976 Jun; 94(2):305-12. PubMed ID: 820833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between methionine uptake and demethiolation in a methionine-utilizing mutant of Pseudomonas fluorescens UK1.
    Laakso S
    J Gen Microbiol; 1976 Aug; 96(2):391-4. PubMed ID: 822130
    [No Abstract]   [Full Text] [Related]  

  • 3. Observations on methionine transport in Pseudomonas fluorescens UK1.
    Mäntsälä P; Laakso S; Nurmikko V
    J Gen Microbiol; 1974 Sep; 84(1):19-27. PubMed ID: 4215863
    [No Abstract]   [Full Text] [Related]  

  • 4. Altered regulation of macromolecular synthesis in methionine-inhibited cultures of Pseudomonas fluorescens UK1.
    Laakso S
    Chem Biol Interact; 1977 Feb; 16(2):201-6. PubMed ID: 403021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of dimethyl disulfide by pseudomonas fluorescens strain 76.
    Ito T; Miyaji T; Nakagawa T; Tomizuka N
    Biosci Biotechnol Biochem; 2007 Feb; 71(2):366-70. PubMed ID: 17284843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae.
    Vuralhan Z; Luttik MA; Tai SL; Boer VM; Morais MA; Schipper D; Almering MJ; Kötter P; Dickinson JR; Daran JM; Pronk JT
    Appl Environ Microbiol; 2005 Jun; 71(6):3276-84. PubMed ID: 15933030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2-fixing enzymes in Pseudomonas fluorescens.
    Higa AI; Milrad de Forchetti SR; Cazzulo JJ
    J Gen Microbiol; 1976 Mar; 93(1):69-74. PubMed ID: 816991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spectrophotometric assay for demethiolating activity.
    Laakso S; Nurmikko V
    Anal Biochem; 1976 May; 72():600-5. PubMed ID: 821356
    [No Abstract]   [Full Text] [Related]  

  • 9. Bacterial ethylene synthesis from 2-oxo-4-thiobutyric acid and from methionine.
    Mansouri S; Bunch AW
    J Gen Microbiol; 1989 Nov; 135(11):2819-27. PubMed ID: 2559143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water relations of solute accumulation in Pseudomonas fluorescens.
    Prior BA; Kenyon CP; van der Veen M; Mildenhall JP
    J Appl Bacteriol; 1987 Feb; 62(2):119-28. PubMed ID: 2883169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of pyrimidine bases and nucleosides by Pseudomonas fluorescens biotype F.
    West TP
    Microbios; 1988; 56(226):27-36. PubMed ID: 3148844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Metabolic behavior of uniformly labelled C14-glutamate and 4-aminobutyrate U-C14 in Pseudomonas fluorescens].
    Ortiz JM; Cascales M; Santos-Ruiz A
    Ann Pharm Fr; 1972 May; 30(5):329-38. PubMed ID: 4627958
    [No Abstract]   [Full Text] [Related]  

  • 13. A plasmid responsible for malonate assimilation in Pseudomonas fluorescens.
    Kim YS; Kim EJ
    Plasmid; 1994 Sep; 32(2):219-21. PubMed ID: 7846146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of carbon source on pyrimidine formation in Pseudomonas fluorescens ATCC 13525.
    West TP
    Microbiol Res; 2005; 160(4):337-42. PubMed ID: 16255137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual influence of the carbon source and L-methionine on the synthesis of sulphur compounds in the cheese-ripening yeast Geotrichum candidum.
    Arfi K; Tâche R; Spinnler HE; Bonnarme P
    Appl Microbiol Biotechnol; 2003 May; 61(4):359-65. PubMed ID: 12743766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Utilization by Escherichia coli and Pseudomonas fluorescens of a siderophore from Pseudomonas fluorescens strain PAB].
    Pajáro MC; Albesa I
    Rev Argent Microbiol; 1992; 24(2):60-6. PubMed ID: 1298014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Asparaginase and glutaminase activity in Pseudomonas fluorescens in continuous cultivation].
    Eremenko VV; Zhukov AV; Nikolaev AIa
    Mikrobiologiia; 1975; 44(4):615-20. PubMed ID: 809640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Fluorene cometabolism by Rhodococcus rhodochrous and Pseudomonas fluorescens].
    Baboshin MA; Finkel'shteĭn ZI; Golovleva LA
    Mikrobiologiia; 2003; 72(2):194-8. PubMed ID: 12751243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of transitional stages in continuous culture of microorganisms.
    Sterkin VE; Chirkov IM; Samoylenko VA
    Biotechnol Bioeng Symp; 1973; 0(4-1):53-60. PubMed ID: 4213406
    [No Abstract]   [Full Text] [Related]  

  • 20. [Synthesis of L-aspartic acid by Escherichia coli and Pseudomonas fluorescens as related to the cultivation conditions].
    Malofeeva IV; Iakovleva VI
    Prikl Biokhim Mikrobiol; 1979; 15(5):671-5. PubMed ID: 117446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.