These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 820833)

  • 21. Cyanase-mediated utilization of cyanate in Pseudomonas fluorescens NCIB 11764.
    Kunz DA; Nagappan O
    Appl Environ Microbiol; 1989 Jan; 55(1):256-8. PubMed ID: 2495763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The physiology of L-methionine catabolism to the secondary metabolite ethylene by Escherichia coli.
    Shipston N; Bunch AW
    J Gen Microbiol; 1989 Jun; 135(6):1489-97. PubMed ID: 2693600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Further studies on the degradation of folic acid in a growing culture of Pseudomonas fluorescens UK-1.
    Soini J; Majasaari K
    Acta Chem Scand; 1973 Oct; 27(10):3611-5. PubMed ID: 4131561
    [No Abstract]   [Full Text] [Related]  

  • 24. [Regulation of asparaginase and glutaminase activity in Pseudomonas fluorescens mutants lacking in the ability to synthesize glutamic acid].
    Zhukov AV; Eremenko VV; Nikolaev AIa
    Mikrobiologiia; 1976 JUL-AUG; 45(4):673-8. PubMed ID: 824527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A relationship between L-serine degradation and methionine biosynthesis in Escherichia coli K12.
    Brown EA; D'Ari R; Newman EB
    J Gen Microbiol; 1990 Jun; 136(6):1017-23. PubMed ID: 2117041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of growth temperature on the accumulation of glucose-oxidation products in Pseudomonas fluorescens.
    Lynch WH; MacLeod J; Franklin M
    Can J Microbiol; 1975 Oct; 21(10):1553-9. PubMed ID: 811341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methionine catabolism in Saccharomyces cerevisiae.
    Perpète P; Duthoit O; De Maeyer S; Imray L; Lawton AI; Stavropoulos KE; Gitonga VW; Hewlins MJ; Dickinson JR
    FEMS Yeast Res; 2006 Jan; 6(1):48-56. PubMed ID: 16423070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on the degradation of pterine and pterine-6-carboxylic acid by Pseudomonas fluorescens UK-1.
    Soini J; Backman A
    Acta Chem Scand B; 1975; 29(6):710-4. PubMed ID: 811029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulfur compound production by Geotrichum candidum from L-methionine: importance of the transamination step.
    Bonnarme P; Arfi K; Dury C; Helinck S; Yvon M; Spinnler HE
    FEMS Microbiol Lett; 2001 Dec; 205(2):247-52. PubMed ID: 11750811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel degradative pathway of 2-nitrobenzoate via 3-hydroxyanthranilate in Pseudomonas fluorescens strain KU-7.
    Hasegawa Y; Muraki T; Tokuyama T; Iwaki H; Tatsuno M; Lau PC
    FEMS Microbiol Lett; 2000 Sep; 190(2):185-90. PubMed ID: 11034277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glucose availability and the growth rate of colonies of Pseudomonas fluorescens.
    Rieck VT; Palumbo SA; Witter LD
    J Gen Microbiol; 1973 Jan; 74(1):1-8. PubMed ID: 4632977
    [No Abstract]   [Full Text] [Related]  

  • 32. Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens.
    Zboińska E; Lejczak B; Kafarski P
    Appl Environ Microbiol; 1992 Sep; 58(9):2993-9. PubMed ID: 1444412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dense growth of aerobic bacteria in a bench-scale fermentor.
    Bauer S; Ziv E
    Biotechnol Bioeng; 1976 Jan; 18(1):81-94. PubMed ID: 813791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The utilization of Tween 80 as carbon source by Pseudomonas.
    Howe TG; Ward JM
    J Gen Microbiol; 1976 Jan; 92(1):234-5. PubMed ID: 812951
    [No Abstract]   [Full Text] [Related]  

  • 35. Pyrimidine biosynthetic pathway of Pseudomonas fluorescens.
    Chu CP; West TP
    J Gen Microbiol; 1990 May; 136(5):875-80. PubMed ID: 1974280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Biomass production enriched in intracellular methionine by a mutant of Saccharomyces cerevisiae].
    Albornoz IJ; Sánchez Crispin JA; Moreno R
    Acta Cient Venez; 1993; 44(5):307-11. PubMed ID: 7483968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Degradation of diarylethane structures by Pseudomonas fluorescens biovar I.
    González B; Olave I; Calderón I; Vicuña R
    Arch Microbiol; 1988; 149(5):389-94. PubMed ID: 3132905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Metabolic products of hydrocarbon-oxidizing strains of Mycococcus lactis and Pseudomonas fluorescens and their influence on culture growth].
    Spitsyna DN; Gradova NB; Davidova EG
    Mikrobiologiia; 1977; 46(6):997-1002. PubMed ID: 414057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mixed carbon source effect in the phenazine-alpha-carboxylic acid synthesis and the aromatic pathway in Pseudomonas spp.
    Korth H
    Arch Microbiol; 1974 May; 97(3):245-52. PubMed ID: 4211209
    [No Abstract]   [Full Text] [Related]  

  • 40. Microbial transformations of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens.
    Huang Z; Dostal L; Rosazza JP
    Appl Environ Microbiol; 1993 Jul; 59(7):2244-50. PubMed ID: 8395165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.