These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 8208385)

  • 21. Synaptic depression and short-term habituation are located in the sensory part of the mammalian startle pathway.
    Simons-Weidenmaier NS; Weber M; Plappert CF; Pilz PK; Schmid S
    BMC Neurosci; 2006 May; 7():38. PubMed ID: 16684348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Sensitization and habituation of command neurons during a defensive reflex in grape snails].
    Balaban PM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1978; 28(2):356-63. PubMed ID: 654575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro formation and activity-dependent plasticity of synapses between Helix neurons involved in the neural control of feeding and withdrawal behaviors.
    Fiumara F; Leitinger G; Milanese C; Montarolo PG; Ghirardi M
    Neuroscience; 2005; 134(4):1133-51. PubMed ID: 16054762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Spontaneous EPSPs in Command Helix Lucorum Neurons during Geterosynaptic Potentiation].
    Palikhova TA; Pivovarov AS
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2016 May; 66(3):361-366. PubMed ID: 30695418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Participation of cardioactive peptides in habituation and sensitization of the synaptic input of command neurons of snail defense behavior.
    Bravarenko NI
    Neurosci Behav Physiol; 1995; 25(2):178-83. PubMed ID: 7630503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Target neuron specification of short-term synaptic facilitation and depression in the cricket CNS.
    Killian KA; Murphey RK
    J Neurobiol; 1998 Dec; 37(4):700-14. PubMed ID: 9858269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monosynaptic connections between LPa7-LPa3 and LPa9-LPa3 neurons in the central nervous system of helix pomatia. Electrophysiological characteristics, monosynaptic plasticity, neurotransmission.
    Ter-Margarian AG
    Acta Physiol Pharmacol Bulg; 1990; 16(3):22-7. PubMed ID: 1966258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The duration of persistence of the electrical characteristics of command neurons during acquisition of long-term sensitization in the common snail.
    Gainutdinova TKh ; Andrianov VV; Nazyrova RR; Gainutdinov KhL
    Neurosci Behav Physiol; 2001; 31(1):69-70. PubMed ID: 11265817
    [No Abstract]   [Full Text] [Related]  

  • 29. Monosynaptic connections between serotonin-containing neurones labelled by 5,6-dihydroxytryptamine-induced pigmentation in the snail Helix pomatia L.
    Vehovszky A; Kemenes G; Rózsa K
    Brain Res; 1989 Apr; 484(1-2):404-7. PubMed ID: 2713699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of a multifunction neuron contributing to defensive arousal in Aplysia.
    Cleary LJ; Byrne JH
    J Neurophysiol; 1993 Nov; 70(5):1767-76. PubMed ID: 8294951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of NH4+ on reflexes in cat spinal cord.
    Raabe W
    J Neurophysiol; 1990 Aug; 64(2):565-74. PubMed ID: 2213133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elementary and compound postsynaptic potentials in the defensive command neurons of Helix lucorum.
    Sokolov EN; Palikhova TA
    Acta Biol Hung; 1999; 50(1-3):235-45. PubMed ID: 10574443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sites of plasticity in the neural circuit mediating tentacle withdrawal in the snail Helix aspersa: implications for behavioral change and learning kinetics.
    Prescott SA; Chase R
    Learn Mem; 1999; 6(4):363-80. PubMed ID: 10509707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Formation of a conditioned defense reflex in edible snails and changes in command neuron activity].
    Maksimova OA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1980; 30(5):1003-11. PubMed ID: 6255701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Principle of neuronal organization of defensive reflexes in mollusks].
    Logunov DB; Konnov MI
    Neirofiziologiia; 1984; 16(1):26-34. PubMed ID: 6325959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of the level of the transmembrane potential on the dynamics of the extinction of the amplitude of the synaptic reactions of the snail under voltage clamping conditions.
    Gusev PV
    Neurosci Behav Physiol; 1996; 26(3):266-72. PubMed ID: 8823745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in Aplysia.
    Castellucci V; Pinsker H; Kupfermann I; Kandel ER
    Science; 1970 Mar; 167(3926):1745-8. PubMed ID: 5416543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Endoneuronal mechanisms of reinforcement].
    Sokolov EN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1987; 37(3):403-7. PubMed ID: 3630372
    [No Abstract]   [Full Text] [Related]  

  • 39. The effect of alpha-latrotoxin on a synaptic connection between identified neurons in the brain of the mollusc Helix pomatia L.
    Osipenko ON; Romanenko AV; Petrushenko EA; Terlezkaya YaT
    Toxicon; 1993 Sep; 31(9):1123-30. PubMed ID: 7505489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intra- and interganglionic synaptic connections in the CNS of Aplysia.
    Fredman SM; Jahan-Parwar B
    Brain Res Bull; 1979; 4(3):393-406. PubMed ID: 226231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.