These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 820853)

  • 61. Columnar distribution of U-fibres from the postcruciate cerebral projection area of the cat's group I muscle afferents.
    Grant G; Landgren S; Silfvenius H
    Exp Brain Res; 1975 Nov; 24(1):57-74. PubMed ID: 1204698
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The effects of stimulating cutaneous and splanchnic afferents on cerebellar unit discharges.
    Newman PP; Paul DH
    J Physiol; 1966 Dec; 187(3):575-82. PubMed ID: 16783912
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of electrical stimulation of peripheral nerves to the hand and forearm on pyramidal tract neurones of the baboon and monkey.
    Wiesendanger M
    Brain Res; 1972 May; 40(1):193-202. PubMed ID: 4260746
    [No Abstract]   [Full Text] [Related]  

  • 64. Corticobulbar projections and orofacial and muscle afferent inputs of neurons in primate sensorimotor cerebral cortex.
    Sirisko MA; Sessle BJ
    Exp Neurol; 1983 Dec; 82(3):716-20. PubMed ID: 6653719
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Neuromagnetic imaging studies discriminate proprioceptive and cutaneous cortical inputs during median nerve stimulation in man.
    Narici L; Romani GL; Traversa R; Rossini PM
    Neurosci Lett; 1989 Apr; 99(1-2):169-74. PubMed ID: 2748008
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The cutaneous saltatory area and presumed neural basis.
    Geldard FA; Sherrick CE
    Percept Psychophys; 1983 Apr; 33(4):299-304. PubMed ID: 6866691
    [No Abstract]   [Full Text] [Related]  

  • 67. The effects of impairment of afferent feedback from the moving limb on the natural activities of neurones in the precentral gyrus of conscious monkeys: a preliminary investigation.
    Lewis MM; Porter R; Horne M
    Brain Res; 1971 Sep; 32(2):467-73. PubMed ID: 5002600
    [No Abstract]   [Full Text] [Related]  

  • 68. Selective excitation of corticofugal neurones by surface-anodal stimulation of the baboon's motor cortex.
    HERN JE; LANDGREN S; PHILLIPS CG; PORTER R
    J Physiol; 1962 Apr; 161(1):73-90. PubMed ID: 13906736
    [No Abstract]   [Full Text] [Related]  

  • 69. Selective activation of neurons in cortical area 3a associated with accurate maintenance of limb positions.
    Tanji J
    Brain Res; 1976 Oct; 115(2):328-33. PubMed ID: 135598
    [No Abstract]   [Full Text] [Related]  

  • 70. Long-latency OFF-responses from the human sensorimotor cortex to tetanizing stimulation of thenar muscles.
    Huttunen J; Hari R
    Neurosci Lett; 1987 Feb; 74(1):63-8. PubMed ID: 3561875
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Motor Recovery After Stroke: From a Vespa Scooter Ride Over the Roman
    Toscano M; Ricci M; Celletti C; Paoloni M; Ruggiero M; Viganò A; Jannini TB; Altarocca A; Liberatore M; Camerota F; Di Piero V
    Front Neurol; 2020; 11():567833. PubMed ID: 33281704
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Proprioceptive errors in the localization of hand landmarks: What can be learnt about the hand metric representation?
    Peviani V; Bottini G
    PLoS One; 2020; 15(7):e0236416. PubMed ID: 32735572
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Using Cutaneous Receptor Vibration to Uncover the Effect of Transcranial Magnetic Stimulation (TMS) on Motor Cortical Excitability.
    Rogić Vidaković M; Kostović A; Jerković A; Šoda J; Russo M; Stella M; Knežić A; Vujović I; Mihalj M; Baban J; Ljubenkov D; Peko M; Benzon B; Hagelien MV; Đogaš Z
    Med Sci Monit; 2020 May; 26():e923166. PubMed ID: 32459795
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Area 2 of primary somatosensory cortex encodes kinematics of the whole arm.
    Chowdhury RH; Glaser JI; Miller LE
    Elife; 2020 Jan; 9():. PubMed ID: 31971510
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Short-Term Effects of Focal Muscle Vibration on Motor Recovery After Acute Stroke: A Pilot Randomized Sham-Controlled Study.
    Toscano M; Celletti C; Viganò A; Altarocca A; Giuliani G; Jannini TB; Mastria G; Ruggiero M; Maestrini I; Vicenzini E; Altieri M; Camerota F; Di Piero V
    Front Neurol; 2019; 10():115. PubMed ID: 30873102
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Perspectives on classical controversies about the motor cortex.
    Omrani M; Kaufman MT; Hatsopoulos NG; Cheney PD
    J Neurophysiol; 2017 Sep; 118(3):1828-1848. PubMed ID: 28615340
    [TBL] [Abstract][Full Text] [Related]  

  • 77. High-frequency neuromuscular electrical stimulation modulates interhemispheric inhibition in healthy humans.
    Gueugneau N; Grosprêtre S; Stapley P; Lepers R
    J Neurophysiol; 2017 Jan; 117(1):467-475. PubMed ID: 27832594
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Representation of Afferent Signals from Forearm Muscle and Cutaneous Nerves in the Primary Somatosensory Cortex of the Macaque Monkey.
    Yamada H; Yaguchi H; Tomatsu S; Takei T; Oya T; Seki K
    PLoS One; 2016; 11(10):e0163948. PubMed ID: 27701434
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Distributed task-specific processing of somatosensory feedback for voluntary motor control.
    Omrani M; Murnaghan CD; Pruszynski JA; Scott SH
    Elife; 2016 Apr; 5():. PubMed ID: 27077949
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Chronic recordings reveal tactile stimuli can suppress spontaneous activity of neurons in somatosensory cortex of awake and anesthetized primates.
    Qi HX; Reed JL; Franca JG; Jain N; Kajikawa Y; Kaas JH
    J Neurophysiol; 2016 Apr; 115(4):2105-23. PubMed ID: 26912593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.