These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 820855)

  • 61. Kinetic and pharmacological examination of stimulation-induced increases in synaptic efficacy in the chick ciliary ganglion.
    Poage RE; Zengel JE
    Synapse; 1993 May; 14(1):81-9. PubMed ID: 8390107
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Meproadifen reaction with the ionic channel of the acetylcholine receptor: potentiation of agonist-induced desensitization at the frog neuromuscular junction.
    Maleque MA; Souccar C; Cohen JB; Albuquerque EX
    Mol Pharmacol; 1982 Nov; 22(3):636-47. PubMed ID: 6296656
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Quantal secretion and nerve-terminal cable properties at neuromuscular junctions in an amphibian (Bufo marinus).
    Macleod GT; Farnell L; Gibson WG; Bennett MR
    J Neurophysiol; 1999 Mar; 81(3):1135-46. PubMed ID: 10085340
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects of calcium channel blockers on stimulation-induced changes in transmitter release at the frog neuromuscular junction.
    Zengel JE; Lee DT; Sosa MA; Mosier DR
    Synapse; 1993 Dec; 15(4):251-62. PubMed ID: 7908759
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The effect of calcium ions on the binomial statistic parameters that control acetylcholine release at preganglionic nerve terminals.
    Bennett MR; Florin T; Pettigrew AG
    J Physiol; 1976 Jun; 257(3):597-620. PubMed ID: 181562
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Quantal mechanism of long-term synaptic potentiation.
    Baxter DA; Bittner GD; Brown TH
    Proc Natl Acad Sci U S A; 1985 Sep; 82(17):5978-82. PubMed ID: 3862111
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Post-tetanic potentiation of acetylcholine release at the frog neuromuscular junction develops after stimulation in Ca2+-free solutions.
    Misler S; Hurlbut WP
    Proc Natl Acad Sci U S A; 1983 Jan; 80(1):315-9. PubMed ID: 6296872
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A comparison of the presynaptic and post-synaptic actions of pentobarbitone and phenobarbitone in the neuromuscular junction of the frog.
    Proctor WR; Weakly JN
    J Physiol; 1976 Jun; 258(1):257-68. PubMed ID: 181566
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A quantitative analysis of local anaesthetic alteration of miniature end-plate currents and end-plate current fluctuations.
    Ruff RL
    J Physiol; 1977 Jan; 264(1):89-124. PubMed ID: 190384
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Binomial analysis of quantal transmitter release at glycerol treated frog neuromuscular junctions.
    Miyamoto MD
    J Physiol; 1975 Aug; 250(1):121-42. PubMed ID: 240928
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Depression of transmitter release at synapses in the rat superior cervical ganglion: the role of transmitter depletion.
    Lin YQ; Graham K; Bennett MR
    Auton Neurosci; 2001 Apr; 88(1-2):16-24. PubMed ID: 11474542
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Depression, recovery and facilitation of neuromuscular transmission during prolonged tetanic stimulation.
    Glavinović MI; Narahashi T
    Neuroscience; 1988 Apr; 25(1):271-81. PubMed ID: 2839798
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The termination of transmitter action at the crustacean excitatory neuromuscular junction.
    Crawford AC; McBurney RN
    J Physiol; 1977 Jul; 268(3):711-29. PubMed ID: 196071
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Facilitation and the conduction of the nerve action potential at the frog neuromuscular junction.
    Baldo GJ; Cohen IS; Van der Kloot W
    Pflugers Arch; 1983 Nov; 399(3):161-5. PubMed ID: 6606802
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Synaptic frequency response: the influence of sinusoidal changes in stimulation frequency on the amplitude of the end-plate potential.
    Landau EM; Lass Y
    J Physiol; 1973 Jan; 228(1):27-40. PubMed ID: 4346704
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Facilitation of transmitter release through available transmitter regulation. An explanation not involving residual calcium theory.
    Sarrazin C
    Neurol Res; 1985 Dec; 7(4):194-8. PubMed ID: 2869431
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Facilitation of acetylcholine secretion at a mouse neuromuscular junction.
    Gage PW; Murphy EC
    Brain Res; 1981 Jan; 204(2):327-37. PubMed ID: 6257326
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Molecular Mechanisms of Short-Term Plasticity: Role of Synapsin Phosphorylation in Augmentation and Potentiation of Spontaneous Glutamate Release.
    Cheng Q; Song SH; Augustine GJ
    Front Synaptic Neurosci; 2018; 10():33. PubMed ID: 30425632
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Short-term potentiation phenomena in the rat limbic forebrain.
    Racine RJ; Milgram NW
    Brain Res; 1983 Feb; 260(2):201-16. PubMed ID: 6299453
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Depression of transmitter release at the neuromuscular junction of the frog.
    Betz WJ
    J Physiol; 1970 Mar; 206(3):629-44. PubMed ID: 5498509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.