BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 8208723)

  • 21. Compromise and accommodation in ecotin, a dimeric macromolecular inhibitor of serine proteases.
    Gillmor SA; Takeuchi T; Yang SQ; Craik CS; Fletterick RJ
    J Mol Biol; 2000 Jun; 299(4):993-1003. PubMed ID: 10843853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid.
    Mukherjee A; Bagchi B
    J Chem Phys; 2004 Jan; 120(3):1602-12. PubMed ID: 15268287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%.
    Mehta PK; Heringa J; Argos P
    Protein Sci; 1995 Dec; 4(12):2517-25. PubMed ID: 8580842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K; Kurgan L
    Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases.
    Fetrow JS; Skolnick J
    J Mol Biol; 1998 Sep; 281(5):949-68. PubMed ID: 9719646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction.
    Dunn SD; Wahl LM; Gloor GB
    Bioinformatics; 2008 Feb; 24(3):333-40. PubMed ID: 18057019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting absolute contact numbers of native protein structure from amino acid sequence.
    Kinjo AR; Horimoto K; Nishikawa K
    Proteins; 2005 Jan; 58(1):158-65. PubMed ID: 15523668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein fold recognition by mapping predicted secondary structures.
    Russell RB; Copley RR; Barton GJ
    J Mol Biol; 1996 Jun; 259(3):349-65. PubMed ID: 8676374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Paired natural cysteine mutation mapping: aid to constraining models of protein tertiary structure.
    Kreisberg R; Buchner V; Arad D
    Protein Sci; 1995 Nov; 4(11):2405-10. PubMed ID: 8563638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis.
    Orencia MC; Yoon JS; Ness JE; Stemmer WP; Stevens RC
    Nat Struct Biol; 2001 Mar; 8(3):238-42. PubMed ID: 11224569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein secondary structure: entropy, correlations and prediction.
    Crooks GE; Brenner SE
    Bioinformatics; 2004 Jul; 20(10):1603-11. PubMed ID: 14988117
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using evolutionary trees in protein secondary structure prediction and other comparative sequence analyses.
    Goldman N; Thorne JL; Jones DT
    J Mol Biol; 1996 Oct; 263(2):196-208. PubMed ID: 8913301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The solution structure of a chimeric LEKTI domain reveals a chameleon sequence.
    Tidow H; Lauber T; Vitzithum K; Sommerhoff CP; Rösch P; Marx UC
    Biochemistry; 2004 Sep; 43(35):11238-47. PubMed ID: 15366933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the conformation of proteins from sequences. Progress and future progress.
    Benner SA
    J Mol Recognit; 1995; 8(1-2):9-28. PubMed ID: 7598957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correlated substitution analysis and the prediction of amino acid structural contacts.
    Horner DS; Pirovano W; Pesole G
    Brief Bioinform; 2008 Jan; 9(1):46-56. PubMed ID: 18000015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlated mutations contain information about protein-protein interaction.
    Pazos F; Helmer-Citterich M; Ausiello G; Valencia A
    J Mol Biol; 1997 Aug; 271(4):511-23. PubMed ID: 9281423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effective connectivity profile: a structural representation that evidences the relationship between protein structures and sequences.
    Bastolla U; Ortíz AR; Porto M; Teichert F
    Proteins; 2008 Dec; 73(4):872-88. PubMed ID: 18536008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of multiple-sequence alignment based on multiple-structure alignment.
    Shatsky M; Nussinov R; Wolfson HJ
    Proteins; 2006 Jan; 62(1):209-17. PubMed ID: 16294339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A.
    Kobe B; Deisenhofer J
    J Mol Biol; 1996 Dec; 264(5):1028-43. PubMed ID: 9000628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GLC1A mutations point to regions of potential functional importance on the TIGR/MYOC protein.
    Rozsa FW; Shimizu S; Lichter PR; Johnson AT; Othman MI; Scott K; Downs CA; Nguyen TD; Polansky J; Richards JE
    Mol Vis; 1998 Oct; 4():20. PubMed ID: 9772276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.