These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 8208724)
1. Investigation of the functional interplay between the primary site and the subsite of RNase T1: kinetic analysis of single and multiple mutants for modified substrates. Steyaert J; Haikal AF; Wyns L Proteins; 1994 Apr; 18(4):318-23. PubMed ID: 8208724 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional structure of ribonuclease T1 complexed with an isosteric phosphonate substrate analogue of GpU: alternate substrate binding modes and catalysis. Arni RK; Watanabe L; Ward RJ; Kreitman RJ; Kumar K; Walz FG Biochemistry; 1999 Feb; 38(8):2452-61. PubMed ID: 10029539 [TBL] [Abstract][Full Text] [Related]
3. A catalytic function for the structurally conserved residue Phe 100 of ribonuclease T1. Doumen J; Gonciarz M; Zegers I; Loris R; Wyns L; Steyaert J Protein Sci; 1996 Aug; 5(8):1523-30. PubMed ID: 8844843 [TBL] [Abstract][Full Text] [Related]
4. Coulombic forces in protein-RNA interactions: binding and cleavage by ribonuclease A and variants at Lys7, Arg10, and Lys66. Fisher BM; Ha JH; Raines RT Biochemistry; 1998 Sep; 37(35):12121-32. PubMed ID: 9724524 [TBL] [Abstract][Full Text] [Related]
5. Functional interactions among the His40, Glu58 and His92 catalysts of ribonuclease T1 as studied by double and triple mutants. Steyaert J; Wyns L J Mol Biol; 1993 Feb; 229(3):770-81. PubMed ID: 8433370 [TBL] [Abstract][Full Text] [Related]
6. Dissection of the ribonuclease T1 subsite. The transesterification kinetics of Asn36Ala and Asn98Ala ribonuclease T1 for minimal dinucleoside phosphates. Steyaert J; Haikal AF; Stanssens P; Wyns L Eur J Biochem; 1992 Feb; 203(3):551-5. PubMed ID: 1735439 [TBL] [Abstract][Full Text] [Related]
7. RNase T1 variant RV cleaves single-stranded RNA after purines due to specific recognition by the Asn46 side chain amide. Czaja R; Struhalla M; Höschler K; Saenger W; Sträter N; Hahn U Biochemistry; 2004 Mar; 43(10):2854-62. PubMed ID: 15005620 [TBL] [Abstract][Full Text] [Related]
9. Subsite interactions of ribonuclease T1: Asn36 and Asn98 accelerate GpN transesterification through interactions with the leaving nucleoside N. Steyaert J; Haikal AF; Wyns L; Stanssens P Biochemistry; 1991 Sep; 30(35):8666-70. PubMed ID: 1653603 [TBL] [Abstract][Full Text] [Related]
10. Substrate binding mechanism of Glu180-->Gln, Asp176-->Asn, and wild-type glucoamylases from Aspergillus niger. Christensen U; Olsen K; Stoffer BB; Svensson B Biochemistry; 1996 Nov; 35(47):15009-18. PubMed ID: 8942667 [TBL] [Abstract][Full Text] [Related]
11. Site specific point mutation changes specificity: a molecular modeling study by free energy simulations and enzyme kinetics of the thermodynamics in ribonuclease T1 substrate interactions. Elofsson A; Kulinski T; Rigler R; Nilsson L Proteins; 1993 Oct; 17(2):161-75. PubMed ID: 8265564 [TBL] [Abstract][Full Text] [Related]
12. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase. Archontis G; Simonson T; Karplus M J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamics of ligand binding and catalysis in human liver medium-chain acyl-CoA dehydrogenase: comparative studies involving normal and 3'-dephosphorylated C8-CoAs and wild-type and Asn191 --> Ala (N191A) mutant enzymes. Peterson KL; Peterson KM; Srivastava DK Biochemistry; 1998 Sep; 37(36):12659-71. PubMed ID: 9730839 [TBL] [Abstract][Full Text] [Related]
14. Addressing the challenge of changing the specificity of RNase T1 with rational and evolutionary approaches. Struhalla M; Czaja R; Hahn U Chembiochem; 2004 Feb; 5(2):200-5. PubMed ID: 14760741 [TBL] [Abstract][Full Text] [Related]
15. Substrate (aglycone) specificity of human cytosolic beta-glucosidase. Berrin JG; Czjzek M; Kroon PA; McLauchlan WR; Puigserver A; Williamson G; Juge N Biochem J; 2003 Jul; 373(Pt 1):41-8. PubMed ID: 12667141 [TBL] [Abstract][Full Text] [Related]
16. Kinetic studies of guanine recognition and a phosphate group subsite on ribonuclease T1 using substitution mutants at Glu46 and Lys41. Jo Chitester B; Walz FG Arch Biochem Biophys; 2002 Oct; 406(1):73-7. PubMed ID: 12234492 [TBL] [Abstract][Full Text] [Related]
17. Catalytic mechanism of glucoamylase probed by mutagenesis in conjunction with hydrolysis of alpha-D-glucopyranosyl fluoride and maltooligosaccharides. Sierks MR; Svensson B Biochemistry; 1996 Feb; 35(6):1865-71. PubMed ID: 8639668 [TBL] [Abstract][Full Text] [Related]
18. Roles of individual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity. Zhang Y; Swaminathan GJ; Deshpande A; Boix E; Natesh R; Xie Z; Acharya KR; Brew K Biochemistry; 2003 Nov; 42(46):13512-21. PubMed ID: 14621997 [TBL] [Abstract][Full Text] [Related]
19. Recruitment of both uniform and differential binding energy in enzymatic catalysis: xylanases from families 10 and 11. Wicki J; Schloegl J; Tarling CA; Withers SG Biochemistry; 2007 Jun; 46(23):6996-7005. PubMed ID: 17503782 [TBL] [Abstract][Full Text] [Related]
20. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases. Tanaka K; Suzuki T FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]