These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 8208848)
1. The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Iseli B; Boller T; Neuhaus JM Plant Physiol; 1993 Sep; 103(1):221-6. PubMed ID: 8208848 [TBL] [Abstract][Full Text] [Related]
2. Substrate specificity and antifungal activity of recombinant tobacco class I chitinases. Suarez V; Staehelin C; Arango R; Holtorf H; Hofsteenge J; Meins F Plant Mol Biol; 2001 Mar; 45(5):609-18. PubMed ID: 11414619 [TBL] [Abstract][Full Text] [Related]
4. Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. Limón MC; Margolles-Clark E; Benítez T; Penttilä M FEMS Microbiol Lett; 2001 Apr; 198(1):57-63. PubMed ID: 11325554 [TBL] [Abstract][Full Text] [Related]
5. Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform. Yun DJ; D'Urzo MP; Abad L; Takeda S; Salzman R; Chen Z; Lee H; Hasegawa PM; Bressan RA Plant Physiol; 1996 Aug; 111(4):1219-25. PubMed ID: 8756502 [TBL] [Abstract][Full Text] [Related]
6. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Melchers LS; Apotheker-de Groot M; van der Knaap JA; Ponstein AS; Sela-Buurlage MB; Bol JF; Cornelissen BJ; van den Elzen PJ; Linthorst HJ Plant J; 1994 Apr; 5(4):469-80. PubMed ID: 8012401 [TBL] [Abstract][Full Text] [Related]
7. Functional analysis of the chitin-binding domain of a family 19 chitinase from Streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function. Itoh Y; Kawase T; Nikaidou N; Fukada H; Mitsutomi M; Watanabe T; Itoh Y Biosci Biotechnol Biochem; 2002 May; 66(5):1084-92. PubMed ID: 12092819 [TBL] [Abstract][Full Text] [Related]
8. Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Limón MC; Chacón MR; Mejías R; Delgado-Jarana J; Rincón AM; Codón AC; Benítez T Appl Microbiol Biotechnol; 2004 Jun; 64(5):675-85. PubMed ID: 14740190 [TBL] [Abstract][Full Text] [Related]
9. Swapping the chitin-binding domain in Bacillus chitinases improves the substrate binding affinity and conformational stability. Neeraja C; Subramanyam R; Moerschbacher BM; Podile AR Mol Biosyst; 2010 Aug; 6(8):1492-502. PubMed ID: 20502809 [TBL] [Abstract][Full Text] [Related]
10. Designing a new chitinase with more chitin binding and antifungal activity. Matroodi S; Motallebi M; Zamani M; Moradyar M World J Microbiol Biotechnol; 2013 Aug; 29(8):1517-23. PubMed ID: 23515962 [TBL] [Abstract][Full Text] [Related]
11. A novel pathogen- and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Ponstein AS; Bres-Vloemans SA; Sela-Buurlage MB; van den Elzen PJ; Melchers LS; Cornelissen BJ Plant Physiol; 1994 Jan; 104(1):109-18. PubMed ID: 8115541 [TBL] [Abstract][Full Text] [Related]
12. Expression of Drosera rotundifolia Chitinase in Transgenic Tobacco Plants Enhanced Their Antifungal Potential. Durechova D; Jopcik M; Rajninec M; Moravcikova J; Libantova J Mol Biotechnol; 2019 Dec; 61(12):916-928. PubMed ID: 31555964 [TBL] [Abstract][Full Text] [Related]
13. Biochemical characteristics of C-terminal region of recombinant chitinase from Bacillus licheniformis: implication of necessity for enzyme properties. Chuang HH; Lin HY; Lin FP FEBS J; 2008 May; 275(9):2240-54. PubMed ID: 18397326 [TBL] [Abstract][Full Text] [Related]
14. Production in Pichia pastoris, antifungal activity and crystal structure of a class I chitinase from cowpea (Vigna unguiculata): Insights into sugar binding mode and hydrolytic action. Landim PGC; Correia TO; Silva FDA; Nepomuceno DR; Costa HPS; Pereira HM; Lobo MDP; Moreno FBMB; Brandão-Neto J; Medeiros SC; Vasconcelos IM; Oliveira JTA; Sousa BL; Barroso-Neto IL; Freire VN; Carvalho CPS; Monteiro-Moreira ACO; Grangeiro TB Biochimie; 2017 Apr; 135():89-103. PubMed ID: 28153694 [TBL] [Abstract][Full Text] [Related]
15. Functional analyses of the chitin-binding domains and the catalytic domain of Brassica juncea chitinase BjCHI1. Tang CM; Chye ML; Ramalingam S; Ouyang SW; Zhao KJ; Ubhayasekera W; Mowbray SL Plant Mol Biol; 2004 Sep; 56(2):285-98. PubMed ID: 15604744 [TBL] [Abstract][Full Text] [Related]
16. A tobacco gene encoding a novel basic class II chitinase: a putative ancestor of basic class I and acidic class II chitinase genes. Ohme-Takagi M; Meins F; Shinshi H Mol Gen Genet; 1998 Sep; 259(5):511-5. PubMed ID: 9790582 [TBL] [Abstract][Full Text] [Related]
17. Antifungal activities of LysM-domain multimers and their fusion chitinases. Takashima T; Sunagawa R; Uechi K; Taira T Int J Biol Macromol; 2020 Jul; 154():1295-1302. PubMed ID: 31733252 [TBL] [Abstract][Full Text] [Related]
18. Properties of catalytic, linker and chitin-binding domains of insect chitinase. Arakane Y; Zhu Q; Matsumiya M; Muthukrishnan S; Kramer KJ Insect Biochem Mol Biol; 2003 Jun; 33(6):631-48. PubMed ID: 12770581 [TBL] [Abstract][Full Text] [Related]
19. Processing, targeting, and antifungal activity of stinging nettle agglutinin in transgenic tobacco. Does MP; Houterman PM; Dekker HL; Cornelissen BJ Plant Physiol; 1999 Jun; 120(2):421-32. PubMed ID: 10364393 [TBL] [Abstract][Full Text] [Related]
20. Physicochemical study of a novel chimeric chitinase with enhanced binding ability. Matroodi S; Zamani M; Haghbeen K; Motallebi M; Aminzadeh S Acta Biochim Biophys Sin (Shanghai); 2013 Oct; 45(10):845-56. PubMed ID: 23979812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]