These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 8211140)

  • 1. Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity.
    Venable RM; Zhang Y; Hardy BJ; Pastor RW
    Science; 1993 Oct; 262(5131):223-6. PubMed ID: 8211140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotation of lipids in membranes: molecular dynamics simulation, 31P spin-lattice relaxation, and rigid-body dynamics.
    Klauda JB; Roberts MF; Redfield AG; Brooks BR; Pastor RW
    Biophys J; 2008 Apr; 94(8):3074-83. PubMed ID: 18192349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine.
    Niemelä P; Hyvönen MT; Vattulainen I
    Biophys J; 2004 Nov; 87(5):2976-89. PubMed ID: 15315947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of phospholipid bilayers with cholesterol.
    Hofsäss C; Lindahl E; Edholm O
    Biophys J; 2003 Apr; 84(4):2192-206. PubMed ID: 12668428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and dynamics of interfacial water in an Lalpha phase lipid bilayer from molecular dynamics simulations.
    Aman K; Lindahl E; Edholm O; Håkansson P; Westlund PO
    Biophys J; 2003 Jan; 84(1):102-15. PubMed ID: 12524268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial peptide dendrimer interacts with phosphocholine membranes in a fluidity dependent manner: A neutron reflection study combined with molecular dynamics simulations.
    Lind TK; Darré L; Domene C; Urbanczyk-Lipkowska Z; Cárdenas M; Wacklin HP
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2075-84. PubMed ID: 26025586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics in atomistic simulations of phospholipid membranes: Nuclear magnetic resonance relaxation rates and lateral diffusion.
    Wohlert J; Edholm O
    J Chem Phys; 2006 Nov; 125(20):204703. PubMed ID: 17144719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasielastic neutron scattering measurements of fast local translational diffusion of lipid molecules in phospholipid bilayers.
    Tabony J; Perly B
    Biochim Biophys Acta; 1991 Mar; 1063(1):67-72. PubMed ID: 2015262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crossover from picosecond collective to single particle dynamics defines the mechanism of lateral lipid diffusion.
    Bolmatov D; Cai YQ; Zav'yalov D; Zhernenkov M
    Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2446-2455. PubMed ID: 30031781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension.
    Sonne J; Jensen MØ; Hansen FY; Hemmingsen L; Peters GH
    Biophys J; 2007 Jun; 92(12):4157-67. PubMed ID: 17400696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and energetic model of the mechanisms for reduced self-diffusion in a lipid bilayer with increasing ionic strength.
    Kotulska M; Kubica K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061903. PubMed ID: 16485970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature.
    Berger O; Edholm O; Jähnig F
    Biophys J; 1997 May; 72(5):2002-13. PubMed ID: 9129804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral diffusion in equimolar mixtures of natural sphingomyelins with dioleoylphosphatidylcholine.
    Filippov A; Munavirov B; Gröbner G; Rudakova M
    Magn Reson Imaging; 2012 Apr; 30(3):413-21. PubMed ID: 22260936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model for the structure of the lipid bilayer.
    Pastor RW; Venable RM; Karplus M
    Proc Natl Acad Sci U S A; 1991 Feb; 88(3):892-6. PubMed ID: 1992480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure-induced ordering in mixed-lipid bilayers.
    Brown A; Skanes I; Morrow MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011913. PubMed ID: 14995653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and computational studies of the effects of free DHA on a model phosphatidylcholine membrane.
    Verde AR; Sierra MB; Alarcón LM; Pedroni VI; Appignanesi GA; Morini MA
    Chem Phys Lipids; 2018 Dec; 217():12-18. PubMed ID: 30359585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of a membrane-anchored peptide: structure, dynamics, and influence on bilayer properties.
    Jensen MØ; Mouritsen OG; Peters GH
    Biophys J; 2004 Jun; 86(6):3556-75. PubMed ID: 15189854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation of a dipalmitoylphosphatidylcholine bilayer with NaCl.
    Pandit SA; Bostick D; Berkowitz ML
    Biophys J; 2003 Jun; 84(6):3743-50. PubMed ID: 12770880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of cholesterol, ergosterol and lanosterol on a dipalmitoyl phosphatidylcholine membrane: a molecular dynamics simulation study.
    Cournia Z; Ullmann GM; Smith JC
    J Phys Chem B; 2007 Feb; 111(7):1786-801. PubMed ID: 17261058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of symmetric and asymmetric lipid bilayers composed of varying concentrations of ganglioside GM1 and DPPC.
    Patel RY; Balaji PV
    J Phys Chem B; 2008 Mar; 112(11):3346-56. PubMed ID: 18298108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.