These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Causes of mutation and mu excision. Cairns J Nature; 1990 May; 345(6272):213. PubMed ID: 2139715 [No Abstract] [Full Text] [Related]
3. Altered sugar selection and transport conferred by spontaneous point and deletion mutations in the lactose carrier of Escherichia coli. Shinnick SG; Varela MF J Membr Biol; 2002 Oct; 189(3):191-9. PubMed ID: 12395284 [TBL] [Abstract][Full Text] [Related]
4. Bistability of the lac operon during growth of Escherichia coli on lactose and lactose+glucose. Narang A; Pilyugin SS Bull Math Biol; 2008 May; 70(4):1032-64. PubMed ID: 18246403 [TBL] [Abstract][Full Text] [Related]
5. Novel escherichia coli strain allows efficient recombinant protein production using lactose as inducer. Menzella HG; Ceccarelli EA; Gramajo HC Biotechnol Bioeng; 2003 Jun; 82(7):809-17. PubMed ID: 12701147 [TBL] [Abstract][Full Text] [Related]
6. Optimality and evolutionary tuning of the expression level of a protein. Dekel E; Alon U Nature; 2005 Jul; 436(7050):588-92. PubMed ID: 16049495 [TBL] [Abstract][Full Text] [Related]
7. Determinants of bistability in induction of the Escherichia coli lac operon. Dreisigmeyer DW; Stajic J; Nemenman I; Hlavacek WS; Wall ME IET Syst Biol; 2008 Sep; 2(5):293-303. PubMed ID: 19045824 [TBL] [Abstract][Full Text] [Related]
8. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose. Wong P; Gladney S; Keasling JD Biotechnol Prog; 1997; 13(2):132-43. PubMed ID: 9104037 [TBL] [Abstract][Full Text] [Related]
9. New data on excisions of Mu from E. coli MCS2 cast doubt on directed mutation hypothesis. Mittler JE; Lenski RE Nature; 1990 Mar; 344(6262):173-5. PubMed ID: 2407962 [TBL] [Abstract][Full Text] [Related]
10. Microbial genetics. Hypermutation under stress. Bridges BA Nature; 1997 Jun; 387(6633):557-8. PubMed ID: 9177337 [No Abstract] [Full Text] [Related]
11. Design of gene circuitry by natural selection: analysis of the lactose catabolic system in Escherichia coli. Savageau MA Biochem Soc Trans; 1999 Feb; 27(2):264-70. PubMed ID: 10093745 [No Abstract] [Full Text] [Related]
12. Polarity effects in the lactose operon of Escherichia coli. Li Y; Altman S J Mol Biol; 2004 May; 339(1):31-9. PubMed ID: 15123418 [TBL] [Abstract][Full Text] [Related]
13. Modeling network dynamics: the lac operon, a case study. Vilar JM; Guet CC; Leibler S J Cell Biol; 2003 May; 161(3):471-6. PubMed ID: 12743100 [TBL] [Abstract][Full Text] [Related]
14. Multistability in the lactose utilization network of Escherichia coli. Ozbudak EM; Thattai M; Lim HN; Shraiman BI; Van Oudenaarden A Nature; 2004 Feb; 427(6976):737-40. PubMed ID: 14973486 [TBL] [Abstract][Full Text] [Related]
16. Strengthening the dimerisation interface of Lac repressor increases its thermostability by 40 deg. C. Gerk LP; Leven O; Müller-Hill B J Mol Biol; 2000 Jun; 299(3):805-12. PubMed ID: 10835285 [TBL] [Abstract][Full Text] [Related]
17. SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. Abo T; Inada T; Ogawa K; Aiba H EMBO J; 2000 Jul; 19(14):3762-9. PubMed ID: 10899129 [TBL] [Abstract][Full Text] [Related]
18. A T7-expression system under temperature control could create temperature-sensitive phenotype of target gene in Escherichia coli. Liang R; Liu X; Liu J; Ren Q; Liang P; Lin Z; Xie X J Microbiol Methods; 2007 Mar; 68(3):497-506. PubMed ID: 17169451 [TBL] [Abstract][Full Text] [Related]
19. Lack of evidence for horizontal transfer of the lac operon into Escherichia coli. Stoebel DM Mol Biol Evol; 2005 Mar; 22(3):683-90. PubMed ID: 15563718 [TBL] [Abstract][Full Text] [Related]
20. Dynamics and bistability in a reduced model of the lac operon. Yildirim N; Santillan M; Horike D; Mackey MC Chaos; 2004 Jun; 14(2):279-92. PubMed ID: 15189056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]