These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8211377)

  • 41. Selective synthesis of mitochondrial proteins by Chinese hamster ovary cells severely starved for various amino acids.
    Chamberlain JW; Pollard JW; Stanners CP
    J Cell Biol; 1984 Apr; 98(4):1603-5. PubMed ID: 6715412
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intracellular boron accumulation in CHO-K1 cells using amino acid transport control.
    Sato E; Yamamoto T; Shikano N; Ogura M; Nakai K; Yoshida F; Uemae Y; Takada T; Isobe T; Matsumura A
    Appl Radiat Isot; 2014 Jun; 88():99-103. PubMed ID: 24388319
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence for coordinate regulation of the A system for amino acid transport and the mRNA for the alpha 1 subunit of the Na+,K(+)-ATPase gene in Chinese hamster ovary cells.
    Qian NX; Pastor-Anglada M; Englesberg E
    Proc Natl Acad Sci U S A; 1991 Apr; 88(8):3416-20. PubMed ID: 1849656
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Chinese hamster ovary cell mutant defective in the non-endocytic uptake of fluorescent analogs of phosphatidylserine: isolation using a cytosol acidification protocol.
    Hanada K; Pagano RE
    J Cell Biol; 1995 Mar; 128(5):793-804. PubMed ID: 7876305
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isolation and properties of a thialysine-resistant clone of CHO cells.
    Di Girolamo M; Di Girolamo A; Foppoli C; Blarzino C; De Marco C
    Mutat Res; 1986 Mar; 173(3):223-7. PubMed ID: 3081802
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of amino acid transport system L by amino acid availability in CHO-K1 cells. A special role for leucine.
    Moreno A; Lobatón CD; Oxender DL
    Biochim Biophys Acta; 1985 Oct; 819(2):271-4. PubMed ID: 4041460
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transport of neutral and cationic amino acids across the brush-border membrane of the rabbit ileum.
    Munck BG
    J Membr Biol; 1985; 83(1-2):1-13. PubMed ID: 3923195
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Studies on recognition of selenahomolysine by aminoacid transport systems and aminocyl-tRNA synthetase.
    Di Girolamo M; Busiello V; Di Girolamo A; Foppoli C; Cini C
    Ital J Biochem; 1988; 37(2):78-84. PubMed ID: 3136092
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanisms determining sensitivity to cisplatin in three mutant Chinese hamster ovary cell lines.
    Segelov E; Mann G; deFazio A; Harnett PR
    Mutat Res; 1998 Jun; 407(3):243-52. PubMed ID: 9653450
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Membrane potential and amino acid transport in a mutant Chinese hamster ovary cell line.
    Rotoli BM; Bussolati O; Dall'Asta V; Gazzola GC
    J Cell Physiol; 1991 Mar; 146(3):417-24. PubMed ID: 2022695
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of L-methionine and L-lysine uptake in chicken jejunal brush-border membrane by dietary methionine.
    Soriano-García JF; Torras-Llort M; Moretó M; Ferrer R
    Am J Physiol; 1999 Dec; 277(6):R1654-61. PubMed ID: 10600911
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid swelling of a CHO-K1 aspartate/glutamate transport mutant in hypo-osmotic medium.
    Tong X; Ash JF; Caldwell KD
    J Membr Biol; 1997 Mar; 156(2):131-9. PubMed ID: 9075644
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles.
    Mircheff AK; Kippen I; Hirayama B; Wright EM
    J Membr Biol; 1982; 64(1-2):113-22. PubMed ID: 7057450
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CHO/hPEPT1 cells overexpressing the human peptide transporter (hPEPT1) as an alternative in vitro model for peptidomimetic drugs.
    Han HK; Rhie JK; Oh DM; Saito G; Hsu CP; Stewart BH; Amidon GL
    J Pharm Sci; 1999 Mar; 88(3):347-50. PubMed ID: 10052994
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Membrane transport by guinea pig peritoneal exudate leukocytes: effect of phagocytosis on hexose and amino acid transport.
    Straus DC; Imhoff JG; Bonventre PF
    J Cell Physiol; 1977 Oct; 93(1):105-16. PubMed ID: 561790
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cis-inhibition and trans-stimulation of cationic amino acid transport in the perfused rat pancreas.
    Sweiry JH; Muñoz M; Mann GE
    Am J Physiol; 1991 Sep; 261(3 Pt 1):C506-14. PubMed ID: 1909494
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Further studies on amino acid transport in murine P388 leukemia cells in vitro. Presence of system y+.
    Lazarus P; Panasci LC
    Biochim Biophys Acta; 1987 Apr; 898(2):154-8. PubMed ID: 3103685
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Basic and neutral amino acid transport in Aspergillus nidulans.
    Piotrowska M; Stepień PP; Bartnik E; Zakrzewska E
    J Gen Microbiol; 1976 Jan; 92(1):89-96. PubMed ID: 1466
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Control of amino acid transport into Chinese hamster ovary cells.
    Geoghegan D; Arnall C; Hatton D; Noble-Longster J; Sellick C; Senussi T; James DC
    Biotechnol Bioeng; 2018 Dec; 115(12):2908-2929. PubMed ID: 29987891
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recognition of aminoethylhomocysteine and aminopropylcysteine by aminoacid transport systems and aminoacyl tRNA synthetases.
    Cini C; Coccia R; Busiello V; Di Girolamo A; Di Girolamo M
    Biochem Int; 1987 Jul; 15(1):35-43. PubMed ID: 3134889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.