These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8211976)

  • 1. Production of dihydrofolate reductase by an improved continuous flow cell-free translation system using wheat germ extract.
    Endo Y; Oka T; Ogata K; Natori Y
    Tokushima J Exp Med; 1993 Jun; 40(1-2):13-7. PubMed ID: 8211976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of an enzymatic active protein using a continuous flow cell-free translation system.
    Endo Y; Otsuzuki S; Ito K; Miura K
    J Biotechnol; 1992 Sep; 25(3):221-30. PubMed ID: 1368801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A long-lived batch reaction system of cell-free protein synthesis.
    Kawarasaki Y; Kawai T; Nakano H; Yamane T
    Anal Biochem; 1995 Apr; 226(2):320-4. PubMed ID: 7793634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An increased rate of cell-free protein synthesis by condensing wheat-germ extract with ultrafiltration membranes.
    Nakano H; Tanaka T; Kawarasaki Y; Yamane T
    Biosci Biotechnol Biochem; 1994 Apr; 58(4):631-4. PubMed ID: 7764855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic expression in E. coli of a DNA sequence coding for mouse dihydrofolate reductase. 1978.
    Chang AC; Nunberg JN; Kaufman RJ; Erlich HA; Schimke RT; Cohen SN
    Biotechnology; 1992; 24():330-6. PubMed ID: 1422034
    [No Abstract]   [Full Text] [Related]  

  • 6. A wheat embryo cell-free protein synthesis system not requiring an exogenous supply of GTP.
    Koga H; Misawa S; Shibui T
    Biotechnol Prog; 2009; 25(5):1322-7. PubMed ID: 19606470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of preparative amounts of biologically active interleukin-6 using a continuous-flow cell-free translation system.
    Volyanik EV; Dalley A; McKay IA; Leigh I; Williams NS; Bustin SA
    Anal Biochem; 1993 Oct; 214(1):289-94. PubMed ID: 8250237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system.
    Kiga D; Sakamoto K; Kodama K; Kigawa T; Matsuda T; Yabuki T; Shirouzu M; Harada Y; Nakayama H; Takio K; Hasegawa Y; Endo Y; Hirao I; Yokoyama S
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9715-20. PubMed ID: 12097643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparative in vitro synthesis of bioactive human interleukin-2 in a continuous flow translation system.
    Kolosov MI; Kolosova IM; Alakhov VYu ; Ovodov SYu ; Alakhov YB
    Biotechnol Appl Biochem; 1992 Oct; 16(2):125-33. PubMed ID: 1457049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dihydrofolate reductase synthesis in the presence of immobilized methotrexate. An approach to a continuous cell-free protein synthesis system.
    Marszal E; Scouten WH
    J Mol Recognit; 1996; 9(5-6):543-8. PubMed ID: 9174938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of cell-free protein synthesis based on a crude cell extract from Escherichia coli, wheat germ, and rabbit reticulocytes.
    Hino M; Kataoka M; Kajimoto K; Yamamoto T; Kido J; Shinohara Y; Baba Y
    J Biotechnol; 2008 Jan; 133(2):183-9. PubMed ID: 17826860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosomal protein S1 is not essential for the trans-translation machinery.
    Qi H; Shimizu Y; Ueda T
    J Mol Biol; 2007 May; 368(3):845-52. PubMed ID: 17376482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplification of protein expression in a cell free system.
    Resto E; Iida A; Van Cleve MD; Hecht SM
    Nucleic Acids Res; 1992 Nov; 20(22):5979-83. PubMed ID: 1281316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous-exchange cell-free protein synthesis using PCR-generated DNA and an RNase E-deficient extract.
    Jun SY; Kang SH; Lee KH
    Biotechniques; 2008 Mar; 44(3):387-91. PubMed ID: 18361792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-free translation system using phosphorothioate-containing mRNA.
    Ueda T; Tohda H; Chikazumi N; Eckstein F; Watanabe K
    Nucleic Acids Symp Ser; 1991; (25):151-2. PubMed ID: 1726804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient expression of E. coli dihydrofolate reductase gene by an in vitro translation system using phosphorothioate mRNA.
    Tohda H; Chikazumi N; Ueda T; Nishikawa K; Watanabe K
    J Biotechnol; 1994 Apr; 34(1):61-9. PubMed ID: 7764744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes.
    Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A
    J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-free protein preparation through prokaryotic transcription-translation methods.
    Kigawa T
    Methods Mol Biol; 2010; 607():1-10. PubMed ID: 20204843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-free protein synthesis using cell extract of Pseudomonas fluorescens and CspA promoter.
    Nakashima N; Tamura T
    Biochem Biophys Res Commun; 2004 Jun; 319(2):671-6. PubMed ID: 15178458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.