BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 8212559)

  • 1. The visna transcriptional activator Tat: effects on the viral LTR and on cellular genes.
    Neuveut C; Vigne R; Clements JE; Sire J
    Virology; 1993 Nov; 197(1):236-44. PubMed ID: 8212559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of visna virus Tat: identification of the targets for transcriptional activation and evidence for a post-transcriptional effect.
    Gdovin SL; Clements JE
    Virology; 1992 Jun; 188(2):438-50. PubMed ID: 1316669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The leucine domain of the visna virus Tat protein mediates targeting to an AP-1 site in the viral long terminal repeat.
    Carruth LM; Morse BA; Clements JE
    J Virol; 1996 Jul; 70(7):4338-44. PubMed ID: 8676456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the long terminal repeat in visna virus by a transcription factor related to the AML/PEBP2/CBF superfamily.
    Sutton KA; Lin CT; Harkiss GD; McConnell I; Sargan DR
    Virology; 1997 Mar; 229(1):240-50. PubMed ID: 9123866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting of the visna virus tat protein to AP-1 sites: interactions with the bZIP domains of fos and jun in vitro and in vivo.
    Morse BA; Carruth LM; Clements JE
    J Virol; 1999 Jan; 73(1):37-45. PubMed ID: 9847304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular and viral specificity of equine infectious anemia virus Tat transactivation.
    Maury WJ; Carpenter S; Graves K; Chesebro B
    Virology; 1994 May; 200(2):632-42. PubMed ID: 8178449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CAEV tat gene trans-activates the viral LTR and is necessary for efficient viral replication.
    Saltarelli MJ; Schoborg R; Gdovin SL; Clements JE
    Virology; 1993 Nov; 197(1):35-44. PubMed ID: 8212571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visna virus Tat protein: a potent transcription factor with both activator and suppressor domains.
    Carruth LM; Hardwick JM; Morse BA; Clements JE
    J Virol; 1994 Oct; 68(10):6137-46. PubMed ID: 8083955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of FOS and JUN in the activation of visna virus gene expression in macrophages through an AP-1 site in the viral LTR.
    Shih DS; Carruth LM; Anderson M; Clements JE
    Virology; 1992 Sep; 190(1):84-91. PubMed ID: 1326822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequences in the visna virus long terminal repeat that control transcriptional activity and respond to viral trans-activation: involvement of AP-1 sites in basal activity and trans-activation.
    Hess JL; Small JA; Clements JE
    J Virol; 1989 Jul; 63(7):3001-15. PubMed ID: 2542608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory elements involved in tax-mediated transactivation of the HTLV-I LTR.
    Seeler JS; Muchardt C; Podar M; Gaynor RB
    Virology; 1993 Oct; 196(2):442-50. PubMed ID: 8372429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cis-acting regulatory elements in the bovine immunodeficiency virus long terminal repeat.
    Fong SE; Pallansch LA; Mikovits JA; Lackman-Smith CS; Ruscetti FW; Gonda MA
    Virology; 1995 Jun; 209(2):604-14. PubMed ID: 7778292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of the basal-level activity of HIV-1 long terminal repeat by HIV-1 nucleocapsid protein.
    Zhang JL; Sharma PL; Crumpacker CS
    Virology; 2000 Mar; 268(2):251-63. PubMed ID: 10704334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of intercellular adhesion molecule 1 by phorbol ester in human neuroblastoma cell line SK-N-SH involves jun- and fos-containing activator protein 1 site binding complex(es).
    Farina AR; Cappabianca L; Mackay AR; Tiberio A; Tacconelli A; Tessitore A; Frati L; Martinotti S; Gulino A
    Cell Growth Differ; 1997 Jul; 8(7):789-800. PubMed ID: 9218873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential and antagonistic effects of v-Jun and c-Jun.
    Gao M; Morgan I; Vogt PK
    Cancer Res; 1996 Sep; 56(18):4229-35. PubMed ID: 8797597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of transgenic sheep that express the visna virus envelope gene.
    Clements JE; Wall RJ; Narayan O; Hauer D; Schoborg R; Sheffer D; Powell A; Carruth LM; Zink MC; Rexroad CE
    Virology; 1994 May; 200(2):370-80. PubMed ID: 8178428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraviolet irradiation, although it activates the transcription factor AP-1 in F9 teratocarcinoma stem cells, does not induce the full complement of differentiation-associated genes.
    Auer HP; König H; Litfin M; Stein B; Rahmsdorf HJ
    Exp Cell Res; 1994 Sep; 214(1):131-8. PubMed ID: 7521841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bovine immunodeficiency virus tat gene: cloning of two distinct cDNAs and identification, characterization, and immunolocalization of the tat gene products.
    Fong SE; Greenwood JD; Williamson JC; Derse D; Pallansch LA; Copeland T; Rasmussen L; Mentzer A; Nagashima K; Tobin G; Gonda MA
    Virology; 1997 Jul; 233(2):339-57. PubMed ID: 9217057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular specificity and replication rate of Maedi Visna virus in vitro can be controlled by LTR sequences.
    Barros SC; Andrésdóttir V; Fevereiro M
    Arch Virol; 2005 Feb; 150(2):201-13. PubMed ID: 15614437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication.
    McAllister JJ; Phillips D; Millhouse S; Conner J; Hogan T; Ross HL; Wigdahl B
    Virology; 2000 Sep; 274(2):262-77. PubMed ID: 10964770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.