These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 8212559)
1. The visna transcriptional activator Tat: effects on the viral LTR and on cellular genes. Neuveut C; Vigne R; Clements JE; Sire J Virology; 1993 Nov; 197(1):236-44. PubMed ID: 8212559 [TBL] [Abstract][Full Text] [Related]
2. Molecular mechanisms of visna virus Tat: identification of the targets for transcriptional activation and evidence for a post-transcriptional effect. Gdovin SL; Clements JE Virology; 1992 Jun; 188(2):438-50. PubMed ID: 1316669 [TBL] [Abstract][Full Text] [Related]
3. The leucine domain of the visna virus Tat protein mediates targeting to an AP-1 site in the viral long terminal repeat. Carruth LM; Morse BA; Clements JE J Virol; 1996 Jul; 70(7):4338-44. PubMed ID: 8676456 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the long terminal repeat in visna virus by a transcription factor related to the AML/PEBP2/CBF superfamily. Sutton KA; Lin CT; Harkiss GD; McConnell I; Sargan DR Virology; 1997 Mar; 229(1):240-50. PubMed ID: 9123866 [TBL] [Abstract][Full Text] [Related]
5. Targeting of the visna virus tat protein to AP-1 sites: interactions with the bZIP domains of fos and jun in vitro and in vivo. Morse BA; Carruth LM; Clements JE J Virol; 1999 Jan; 73(1):37-45. PubMed ID: 9847304 [TBL] [Abstract][Full Text] [Related]
6. Cellular and viral specificity of equine infectious anemia virus Tat transactivation. Maury WJ; Carpenter S; Graves K; Chesebro B Virology; 1994 May; 200(2):632-42. PubMed ID: 8178449 [TBL] [Abstract][Full Text] [Related]
7. The CAEV tat gene trans-activates the viral LTR and is necessary for efficient viral replication. Saltarelli MJ; Schoborg R; Gdovin SL; Clements JE Virology; 1993 Nov; 197(1):35-44. PubMed ID: 8212571 [TBL] [Abstract][Full Text] [Related]
8. Visna virus Tat protein: a potent transcription factor with both activator and suppressor domains. Carruth LM; Hardwick JM; Morse BA; Clements JE J Virol; 1994 Oct; 68(10):6137-46. PubMed ID: 8083955 [TBL] [Abstract][Full Text] [Related]
9. Involvement of FOS and JUN in the activation of visna virus gene expression in macrophages through an AP-1 site in the viral LTR. Shih DS; Carruth LM; Anderson M; Clements JE Virology; 1992 Sep; 190(1):84-91. PubMed ID: 1326822 [TBL] [Abstract][Full Text] [Related]
10. Sequences in the visna virus long terminal repeat that control transcriptional activity and respond to viral trans-activation: involvement of AP-1 sites in basal activity and trans-activation. Hess JL; Small JA; Clements JE J Virol; 1989 Jul; 63(7):3001-15. PubMed ID: 2542608 [TBL] [Abstract][Full Text] [Related]
11. Regulatory elements involved in tax-mediated transactivation of the HTLV-I LTR. Seeler JS; Muchardt C; Podar M; Gaynor RB Virology; 1993 Oct; 196(2):442-50. PubMed ID: 8372429 [TBL] [Abstract][Full Text] [Related]
12. cis-acting regulatory elements in the bovine immunodeficiency virus long terminal repeat. Fong SE; Pallansch LA; Mikovits JA; Lackman-Smith CS; Ruscetti FW; Gonda MA Virology; 1995 Jun; 209(2):604-14. PubMed ID: 7778292 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of the basal-level activity of HIV-1 long terminal repeat by HIV-1 nucleocapsid protein. Zhang JL; Sharma PL; Crumpacker CS Virology; 2000 Mar; 268(2):251-63. PubMed ID: 10704334 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional regulation of intercellular adhesion molecule 1 by phorbol ester in human neuroblastoma cell line SK-N-SH involves jun- and fos-containing activator protein 1 site binding complex(es). Farina AR; Cappabianca L; Mackay AR; Tiberio A; Tacconelli A; Tessitore A; Frati L; Martinotti S; Gulino A Cell Growth Differ; 1997 Jul; 8(7):789-800. PubMed ID: 9218873 [TBL] [Abstract][Full Text] [Related]
15. Differential and antagonistic effects of v-Jun and c-Jun. Gao M; Morgan I; Vogt PK Cancer Res; 1996 Sep; 56(18):4229-35. PubMed ID: 8797597 [TBL] [Abstract][Full Text] [Related]
16. Development of transgenic sheep that express the visna virus envelope gene. Clements JE; Wall RJ; Narayan O; Hauer D; Schoborg R; Sheffer D; Powell A; Carruth LM; Zink MC; Rexroad CE Virology; 1994 May; 200(2):370-80. PubMed ID: 8178428 [TBL] [Abstract][Full Text] [Related]
17. Ultraviolet irradiation, although it activates the transcription factor AP-1 in F9 teratocarcinoma stem cells, does not induce the full complement of differentiation-associated genes. Auer HP; König H; Litfin M; Stein B; Rahmsdorf HJ Exp Cell Res; 1994 Sep; 214(1):131-8. PubMed ID: 7521841 [TBL] [Abstract][Full Text] [Related]
18. Bovine immunodeficiency virus tat gene: cloning of two distinct cDNAs and identification, characterization, and immunolocalization of the tat gene products. Fong SE; Greenwood JD; Williamson JC; Derse D; Pallansch LA; Copeland T; Rasmussen L; Mentzer A; Nagashima K; Tobin G; Gonda MA Virology; 1997 Jul; 233(2):339-57. PubMed ID: 9217057 [TBL] [Abstract][Full Text] [Related]
19. Cellular specificity and replication rate of Maedi Visna virus in vitro can be controlled by LTR sequences. Barros SC; Andrésdóttir V; Fevereiro M Arch Virol; 2005 Feb; 150(2):201-13. PubMed ID: 15614437 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication. McAllister JJ; Phillips D; Millhouse S; Conner J; Hogan T; Ross HL; Wigdahl B Virology; 2000 Sep; 274(2):262-77. PubMed ID: 10964770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]