BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8212678)

  • 1. Potassium loss and cellular dehydration of stored erythrocytes following incubation in autologous plasma: role of the KCl cotransport system.
    Olivieri O; de Franceschi L; de Gironcoli M; Girelli D; Corrocher R
    Vox Sang; 1993; 65(2):95-102. PubMed ID: 8212678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of a [K+,Cl-]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl-]-cotransport system.
    Garay RP; Nazaret C; Hannaert PA; Cragoe EJ
    Mol Pharmacol; 1988 Jun; 33(6):696-701. PubMed ID: 3380083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume-dependent regulation of ion carriers in human and rat erythrocytes: role of cytoskeleton and protein phosphorylation.
    Orlov SN; Kuznetsov SR; Kolosova IA; Aksentsev SL; Konev SV
    Ross Fiziol Zh Im I M Sechenova; 1997; 83(5-6):119-47. PubMed ID: 13677670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for the involvement of K+ channels and K(+)-Cl- cotransport in the regulatory volume decrease of newborn rat cardiomyocytes.
    Taouil K; Hannaert P
    Pflugers Arch; 1999 Dec; 439(1-2):56-66. PubMed ID: 10651001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfhydryl oxidation and activation of red cell K(+)-Cl- cotransport in the transgenic SAD mouse.
    De Franceschi L; Beuzard Y; Brugnara C
    Am J Physiol; 1995 Oct; 269(4 Pt 1):C899-906. PubMed ID: 7485459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of K+/Cl- cotransport in human erythrocytes exposed to oxidative agents.
    Olivieri O; Bonollo M; Friso S; Girelli D; Corrocher R; Vettore L
    Biochim Biophys Acta; 1993 Mar; 1176(1-2):37-42. PubMed ID: 8452877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na(+)-K(+)-2Cl- cotransport, Na+/H+ exchange, and cell volume in ferret erythrocytes.
    Mairbäurl H; Herth C
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1603-11. PubMed ID: 8944644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cl-dependent K transport in a pure population of volume-regulating human erythrocytes.
    O'Neill WC
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C858-64. PubMed ID: 2705517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling.
    Gusev GP; Lapin AV; Agulakova NI
    Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cell age and phenylhydrazine on the cation transport properties of rabbit erythrocytes.
    Brugnara C; de Franceschi L
    J Cell Physiol; 1993 Feb; 154(2):271-80. PubMed ID: 8381125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and peculiarities of thermal inactivation of volume-induced Na+/H+ exchange, Na+,K+,2Cl- cotransport and K+,Cl- cotransport in rat erythrocytes.
    Orlov SN; Kolosova IA; Cragoe EJ; Gurlo TG; Mongin AA; Aksentsev SL; Konev SV
    Biochim Biophys Acta; 1993 Sep; 1151(2):186-92. PubMed ID: 8396975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of K+ efflux and dehydration of sickle cells by [(dihydroindenyl)oxy]alkanoic acid: an inhibitor of the K+ Cl- cotransport system.
    Vitoux D; Olivieri O; Garay RP; Cragoe EJ; Galacteros F; Beuzard Y
    Proc Natl Acad Sci U S A; 1989 Jun; 86(11):4273-6. PubMed ID: 2726772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance to osmotic lysis in BXD-31 mouse erythrocytes: association with upregulated K-Cl cotransport.
    Armsby CC; Stuart-Tilley AK; Alper SL; Brugnara C
    Am J Physiol; 1996 Mar; 270(3 Pt 1):C866-77. PubMed ID: 8638668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swelling-activated K-Cl cotransport: metabolic dependence and inhibition by vanadate and fluoride.
    O'Neill WC
    Am J Physiol; 1991 Feb; 260(2 Pt 1):C308-15. PubMed ID: 1847586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of the potassium influx in rat erythrocytes.
    Ihrig I; Schönheit C; Häussner W; Bernhardt I
    Gen Physiol Biophys; 1992 Aug; 11(4):377-88. PubMed ID: 1330816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl cotransport.
    De Franceschi L; Fumagalli L; Olivieri O; Corrocher R; Lowell CA; Berton G
    J Clin Invest; 1997 Jan; 99(2):220-7. PubMed ID: 9005990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anion transport systems in the plasma membrane of vertebrate cells.
    Hoffmann EK
    Biochim Biophys Acta; 1986 Jun; 864(1):1-31. PubMed ID: 3521744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition and stimulation of K+ transport across the frog erythrocyte membrane by furosemide, DIOA, DIDS and quinine.
    Gusev GP; Lapin AV; Agalakova NI
    Gen Physiol Biophys; 1999 Sep; 18(3):269-82. PubMed ID: 10703743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of membrane potential on K-Cl transport in human erythrocytes.
    Kaji DM
    Am J Physiol; 1993 Feb; 264(2 Pt 1):C376-82. PubMed ID: 8447368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deoxygenation of sickle red blood cells stimulates KCl cotransport without affecting Na+/H+ exchange.
    Joiner CH; Jiang M; Fathallah H; Giraud F; Franco RS
    Am J Physiol; 1998 Jun; 274(6):C1466-75. PubMed ID: 9696688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.