These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 821312)
1. Modification of microsomal membrane components and induction of hepatic drug biotransformation in rats on a high cholesterol diet. Lang M; Laitinen M; Hietanen E; Vainio H Acta Pharmacol Toxicol (Copenh); 1976 Aug; 39(2):273-88. PubMed ID: 821312 [No Abstract] [Full Text] [Related]
2. Enhancement of hepatic drug biotransformation rate by polychlorinated biphenyls in rats fed cholesterol-rich diet. Laitinen M; Lang M; Hietanen E; Vainio H Toxicology; 1975 Sep; 5(1):79-88. PubMed ID: 810923 [TBL] [Abstract][Full Text] [Related]
3. Inducibility of mucosal drug-metabolizing enzymes of rats fed on a cholesterol-rich diet by polychlorinated biphenyl, 3-methylcholanthrene and phenobarbitone. Hietanen E; Laitinen M; Lang M; Vainio H Pharmacology; 1975; 13(4):287-96. PubMed ID: 810814 [TBL] [Abstract][Full Text] [Related]
4. [Participation of the redox chain of rat liver microsomes in tightening the ring of 1,4-benzdiazepines]. Bogatskiĭ AV; Golovenko NIa; Andronati SA; Kolomeĭchenko GIu; Zhilina ZI Dokl Akad Nauk SSSR; 1977; 234(1):215-8. PubMed ID: 407063 [No Abstract] [Full Text] [Related]
5. Hepatic microsomal enzyme induction by 2,2', 3,3', 4,4'- and 2,2', 3', 4,4', 5-hexachlorobiphenyl. Parkinson A; Robertson LW; Safe S Life Sci; 1980 Dec; 27(24):2333-7. PubMed ID: 6782406 [No Abstract] [Full Text] [Related]
6. Characterization of microsomal electron transport components from control, phenobarbital, and 3-methylcholanthrene treated mice: I. Distribution of electron transport components in ammonium-sulfate fractions from mouse liver microsomes. Mull RH; Voigt T; Flemming K Biochem Biophys Res Commun; 1975 Jan; 64(3):1098-106. PubMed ID: 807209 [No Abstract] [Full Text] [Related]
7. Characterization of microsomal electron transport components from control, phenobarbital- and 3-methylcholanthrene-treated mice. II. Improved resolution and quantitation of major components in ammonium sulfate fractions from total liver microsomes. Mull RH; Schgaguler M; Mönig H; Voigt T; Flemming K Biochim Biophys Acta; 1977 Dec; 462(3):671-88. PubMed ID: 202308 [TBL] [Abstract][Full Text] [Related]
8. Interaction between NADPH-cytochrome P-450 reductase and hepatic microsomes. Yang CS; Strickhart FS; Kicha LP Biochim Biophys Acta; 1978 May; 509(2):326-37. PubMed ID: 26401 [TBL] [Abstract][Full Text] [Related]
9. Effects of linoleic acid hydroperoxide on the hepatic monooxygenase systems of microsomes from untreated, phenobarbital-treated, and 3-methylcholanthrene-treated rats. Jeffery E; Kotake A; Azhary RE Mol Pharmacol; 1977 May; 13(3):415-25. PubMed ID: 406515 [No Abstract] [Full Text] [Related]
10. Sex difference in the O-dealkylation activity of 7-hydroxycoumarin O-alkyl derivatives in liver microsomes of rats. Kamataki T; Ando M; Yamazoe Y; Ishii K; Kato R Biochem Pharmacol; 1980 Apr; 29(7):1015-22. PubMed ID: 6770868 [No Abstract] [Full Text] [Related]
11. Conversion of benzo[a]pyrene-3,6-quinone to quinol glucuronides with rat liver microsomes or purified NADPH-cytochrome c reductase and UDP-glucuronosyltransferase. Bock KW; Lilienblum W; Pfeil H FEBS Lett; 1980 Dec; 121(2):269-72. PubMed ID: 6780376 [No Abstract] [Full Text] [Related]
12. Purification and partial characterization of hepatic microsomal cytochrome P-450s from phenobarbital- and 3-methylcholanthrene-treated rats. Masuda-Mikawa R; Fujii-Kuriyama Y; Negishi M; Tashiro Y J Biochem; 1979 Nov; 86(5):1383-94. PubMed ID: 118169 [TBL] [Abstract][Full Text] [Related]
13. Preservation of various microsomal drug metabolizing components in tissue preparations from the livers, lungs, and small intestines of rodents. Tredger JM; Chhabra RS Drug Metab Dispos; 1976; 4(5):451-9. PubMed ID: 10144 [TBL] [Abstract][Full Text] [Related]
14. Dietary fats and properties of endoplasmic reticulum: II. Dietary lipid induced changes in activities of drug metabolizing enzymes in liver and duodenum of rat. Hietanen E; Laitinen M; Vainio H; Hänninen O Lipids; 1975 Aug; 10(8):467-72. PubMed ID: 808676 [TBL] [Abstract][Full Text] [Related]
15. Turnover of two drug-inducible forms of microsomal cytochrome P-450 in rat liver. Sadano H; Omura T J Biochem; 1983 May; 93(5):1375-83. PubMed ID: 6411696 [No Abstract] [Full Text] [Related]
16. The liver microsomal hydroxylation enzyme system. Induction and properties of the functional components. Lu AY; Kuntzman R; Conney AH Front Gastrointest Res; 1976; 2():1-31. PubMed ID: 819342 [No Abstract] [Full Text] [Related]
17. Effects of phenobarbital and 3-methylcholanthrene on substrate specificity of rat liver microsomal UDP-glucuronyltransferase. Bock KW; Fröhling W; Remmer H; Rexer B Biochim Biophys Acta; 1973 Nov; 327(1):46-56. PubMed ID: 4203741 [No Abstract] [Full Text] [Related]
18. Roles of UDP-glucuronosyltransferase in the inactivation of benzo(a)pyrene. Bock KW; Bock-Hennig BS; Lilienblum W; Pfeil H; Volp RF Adv Exp Med Biol; 1981; 136 Pt A():53-73. PubMed ID: 6283814 [No Abstract] [Full Text] [Related]
19. Starvation and phenobarbital treatment effects on drug hydroxylation and glucuronidation in the rat liver and small intestinal mucosa. Marselos M; Laitinen M Biochem Pharmacol; 1975 Aug; 24(16):1529-35. PubMed ID: 811226 [No Abstract] [Full Text] [Related]
20. Rate-limiting step in the reconstituted microsomal drug hydroxylase system. Imai Y; Sato R; Iyanagi T J Biochem; 1977 Nov; 82(5):1237-46. PubMed ID: 412842 [No Abstract] [Full Text] [Related] [Next] [New Search]