These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8213180)

  • 41. The force-velocity relation of the rabbit digastric muscle.
    Anapol FC; Muhl ZF; Fuller JH
    Arch Oral Biol; 1987; 32(2):93-9. PubMed ID: 3478015
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High ionic strength and low pH detain activated skinned rabbit skeletal muscle crossbridges in a low force state.
    Seow CY; Ford LE
    J Gen Physiol; 1993 Apr; 101(4):487-511. PubMed ID: 8505625
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of calcium and ionic strength on shortening velocity and tension development in frog skinned muscle fibres.
    Julian FJ; Moss RL
    J Physiol; 1981 Feb; 311():179-99. PubMed ID: 6973624
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Force-velocity relation and contractility in striated muscles.
    Mashima H
    Jpn J Physiol; 1984; 34(1):1-17. PubMed ID: 6727065
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isotonic velocity transients in frog muscle fibres following quick changes in load.
    Sugi H; Tsuchiya T
    J Physiol; 1981; 319():219-38. PubMed ID: 7320912
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Changes in contractile dynamics during the course of a twitch of a frog muscle fibre.
    Haugen P
    J Muscle Res Cell Motil; 1987 Oct; 8(5):448-60. PubMed ID: 3501435
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancement of mechanical performance in frog muscle fibres after quick increases in load.
    Sugi H; Tsuchiya T
    J Physiol; 1981; 319():239-52. PubMed ID: 7320914
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The force-velocity relationship at high shortening velocities in the soleus muscle of the rat.
    Claflin DR; Faulkner JA
    J Physiol; 1989 Apr; 411():627-37. PubMed ID: 2614737
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The development of the force-velocity relation in normal and dantrolene-treated frog single muscle fibres.
    Cecchi G; Colomo F; Piazzesi G
    J Muscle Res Cell Motil; 1983 Aug; 4(4):395-404. PubMed ID: 6605365
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isometric force production before and after chemical skinning in isolated muscle fibres of the frog Rana temporaria.
    Elzinga G; Stienen GJ; Wilson MG
    J Physiol; 1989 Mar; 410():171-85. PubMed ID: 2795477
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differences in temperature dependence of muscle contractile properties and myofibrillar ATPase activity in a cold-temperature fish.
    Johnston IA; Sidell BD
    J Exp Biol; 1984 Jul; 111():179-89. PubMed ID: 6238119
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Force-velocity and unloaded shortening velocity during graded potassium contractures in frog skeletal muscle fibres.
    Colomo F; Pizza L; Scialpi A
    J Muscle Res Cell Motil; 2000 Jan; 21(1):9-19. PubMed ID: 10813631
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the Shape of the Force-Velocity Relationship in Skeletal Muscles: The Linear, the Hyperbolic, and the Double-Hyperbolic.
    Alcazar J; Csapo R; Ara I; Alegre LM
    Front Physiol; 2019; 10():769. PubMed ID: 31275173
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intrinsic shortening speed of temperature-jump-activated intact muscle fibers. Effects of varying osmotic pressure with sucrose and KCl.
    Gulati J; Babu A
    Biophys J; 1984 Feb; 45(2):431-45. PubMed ID: 6607750
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Shortening velocity and force/pCa relationship in skinned crab muscle fibres of different types.
    Galler S; Rathmayer W
    Pflugers Arch; 1992 Feb; 420(2):187-93. PubMed ID: 1535702
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Depression of force by phosphate in skinned skeletal muscle fibers of the frog.
    Stienen GJ; Roosemalen MC; Wilson MG; Elzinga G
    Am J Physiol; 1990 Aug; 259(2 Pt 1):C349-57. PubMed ID: 2143356
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of fatigue and reduced intracellular pH on segment dynamics in 'isometric' relaxation of frog muscle fibres.
    Curtin NA; Edman KA
    J Physiol; 1989 Jun; 413():159-74. PubMed ID: 2600846
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Shortening velocity in skinned single muscle fibers. Influence of filament lattice spacing.
    Metzger JM; Moss RL
    Biophys J; 1987 Jul; 52(1):127-31. PubMed ID: 3607220
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Power output and force-velocity relationship of red and white muscle fibres from the Pacific blue marlin (Makaira nigricans).
    Johnston IA; Salamonski J
    J Exp Biol; 1984 Jul; 111():171-7. PubMed ID: 6491589
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Force during stretch and shortening of frog sartorius muscle: effects of intracellular acidification due to increased carbon dioxide.
    Curtin NA
    J Muscle Res Cell Motil; 1990 Jun; 11(3):251-7. PubMed ID: 2119394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.