These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 821475)

  • 1. Spectroscopic evidence for the uneven distribution of adenine and uracil residues in ribosomal ribonucleic acid of Drosophila melanogaster and of Plasmodium knowlesi and its possible evolutionary significance.
    Cox RA; Godwin E; Hastings JR
    Biochem J; 1976 Jun; 155(3):465-75. PubMed ID: 821475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The circular dichroism of ribosomal ribonucleic acids.
    Cox RA; Hirst W; Godwin E; Kaiser I
    Biochem J; 1976 May; 155(2):279-91. PubMed ID: 820335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A possible method for characterizing the secondary structure of ribonucleic acids.
    Cox RA
    Biochem J; 1966 Jul; 100(1):146-68. PubMed ID: 5338275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of the influence of magnesium ions on the conformation of ribosomal ribonucleic acid and on the stability of the larger subribosomal particle of rabbit reticulocytes.
    Cox RA; Hirst W
    Biochem J; 1976 Dec; 160(3):505-19. PubMed ID: 797388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doublet frequencies in sequenced nucleic acids.
    Elton RA
    J Mol Evol; 1975 Mar; 4(4):323-46. PubMed ID: 1107565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal denaturation in acidic solutions of double-helical ribonucleic acid from virus-like particles found in Penicillium chrysogenum. A spectrophotometric study.
    Cox RA; Kanagalingam K; Sutherland E
    Biochem J; 1971 Nov; 125(2):655-65. PubMed ID: 5004201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosomes and ribonucleic acids of Coxiella burneti.
    Baca OG; Hersh RT; Paretsky D
    J Bacteriol; 1973 Oct; 116(1):441-6. PubMed ID: 4745423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the secondary structure features of Escherichia coli, Caldariella acidophila and mammalian ribosomal RNA species by chemical modification of sterically exposed bases.
    Cammarano P; Londei P; Biagini R; De Rosa M; Gambacorta A
    Eur J Biochem; 1982 Nov; 128(2-3):297-307. PubMed ID: 6759113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide sequence of Drosophila melanogaster 5S RNA: evidence for a general 5S RNA model.
    Benhamou J; Jordan BR
    FEBS Lett; 1976 Feb; 62(2):146-9. PubMed ID: 815108
    [No Abstract]   [Full Text] [Related]  

  • 10. Non-random variability in evolution of base compositions of ribosomal RNA.
    Amaldi F
    Nature; 1969 Jan; 221(5175):95-6. PubMed ID: 4973141
    [No Abstract]   [Full Text] [Related]  

  • 11. Sequence of the 3'-terminal portion of Drosophila melanogaster 18 S rRNA and of the adjoining spacer: comparison with corresponding prokaryotic and eukaryotic sequences.
    Jordan BR; Latil-Damotte M; Jourdan R
    FEBS Lett; 1980 Aug; 117(1):227-31. PubMed ID: 6250894
    [No Abstract]   [Full Text] [Related]  

  • 12. Investigation of the secondary structure of Escherichia coli 5 S RNA by high-resolution nuclear magnetic resonance.
    Kearns DR; Wong YP
    J Mol Biol; 1974 Aug; 87(4):755-74. PubMed ID: 4610155
    [No Abstract]   [Full Text] [Related]  

  • 13. Partial nucleotide sequence of 16S ribosomal RNA from E. coli.
    Fellner P; Ehresmann C; Stiegler P; Ebel JP
    Nat New Biol; 1972 Sep; 239(88):1-5. PubMed ID: 4562230
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on the 3'-terminal sequences of the large ribosomal ribonucleic acid of different eukaryotes and those associated with "hidden" breaks in heart-dissociable insects 26S ribonucleic acid.
    Shine J; Hunt JA; Dalgarno L
    Biochem J; 1974 Sep; 141(3):617-25. PubMed ID: 4219141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of the thermal stability of ribosomes and biologically active subribosomal particles.
    Cox RA; Pratt H; Huvos P; Higginson B; Hirst W
    Biochem J; 1973 Jul; 134(3):775-93. PubMed ID: 4584137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical characterization of the ribosomal RNA species of the Mollusca. Molecular weight, integrity and secondary-structure features of the RNA of the large and small ribosomal subunits.
    Cammarano P; Londei P; Mazzei F; Felsani A
    Biochem J; 1980 Aug; 189(2):313-35. PubMed ID: 7458915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformation of ribosomal RNA of E. coli: an infrared analysis.
    Cotter RI; Gratzer WB
    Nature; 1969 Jan; 221(5176):154-6. PubMed ID: 4882224
    [No Abstract]   [Full Text] [Related]  

  • 18. Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster.
    Hancock JM; Tautz D; Dover GA
    Mol Biol Evol; 1988 Jul; 5(4):393-414. PubMed ID: 3136295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spectrophotometric study of the secondary structure of ribonucleic acid isolated from the smaller and larger ribosomal subparticles of rabbit reticulocytes.
    Cox RA
    Biochem J; 1970 Mar; 117(1):101-18. PubMed ID: 4911953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA.
    Rousset F; PĂ©landakis M; Solignac M
    Proc Natl Acad Sci U S A; 1991 Nov; 88(22):10032-6. PubMed ID: 1946420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.