BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 8215403)

  • 1. A diffusion-controlled step in the catalytic cycle of nitrous oxide reductase from Wolinella succinogenes.
    Mukonoweshuro C; Hollocher TC
    Arch Biochem Biophys; 1993 Oct; 306(1):195-9. PubMed ID: 8215403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An apparently allosteric effect involving N2O with the nitrous oxide reductase from Wolinella succinogenes.
    Zhang C; Jones AM; Hollocher TC
    Biochem Biophys Res Commun; 1992 Aug; 187(1):135-9. PubMed ID: 1520293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and consumption of nitrous oxide in nitrate-ammonifying Wolinella succinogenes cells.
    Luckmann M; Mania D; Kern M; Bakken LR; Frostegård Å; Simon J
    Microbiology (Reading); 2014 Aug; 160(Pt 8):1749-1759. PubMed ID: 24781903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and some characteristics of a cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes.
    Teraguchi S; Hollocher TC
    J Biol Chem; 1989 Feb; 264(4):1972-9. PubMed ID: 2536696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of dichloromethane (methylene chloride) with the nitrous oxide reductase from Wolinella succinogenes.
    Zhang C; Hollocher TC
    World J Microbiol Biotechnol; 1993 Jul; 9(4):479-82. PubMed ID: 24420116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The unprecedented nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase.
    Simon J; Einsle O; Kroneck PM; Zumft WG
    FEBS Lett; 2004 Jul; 569(1-3):7-12. PubMed ID: 15225600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of recombinant multiheme cytochromes c in Wolinella succinogenes.
    Kern M; Simon J
    Methods Enzymol; 2011; 486():429-46. PubMed ID: 21185447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clade II nitrous oxide respiration of Wolinella succinogenes depends on the NosG, -C1, -C2, -H electron transport module, NosB and a Rieske/cytochrome bc complex.
    Hein S; Witt S; Simon J
    Environ Microbiol; 2017 Dec; 19(12):4913-4925. PubMed ID: 28925551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductively activated nitrous oxide reductase reacts directly with substrate.
    Chan JM; Bollinger JA; Grewell CL; Dooley DM
    J Am Chem Soc; 2004 Mar; 126(10):3030-1. PubMed ID: 15012115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation.
    Su Q; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8572-81. PubMed ID: 10387105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of a cytochrome c-nitrous oxide reductase complex is obligatory for N2O reduction by Paracoccus pantotrophus.
    Rasmussen T; Brittain T; Berks BC; Watmough NJ; Thomson AJ
    Dalton Trans; 2005 Nov; (21):3501-6. PubMed ID: 16234931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TsdC, a unique lipoprotein from Wolinella succinogenes that enhances tetrathionate reductase activity of TsdA.
    Kurth JM; Schuster A; Seel W; Herresthal S; Simon J; Dahl C
    FEMS Microbiol Lett; 2017 Feb; 364(3):. PubMed ID: 28062520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PsrR, a member of the AraC family of transcriptional regulators, is required for the synthesis of Wolinella succinogenes polysulfide reductase.
    Braatsch S; Krafft T; Simon J; Gross R; Klimmek O; Kröger A
    Arch Microbiol; 2002 Sep; 178(3):202-7. PubMed ID: 12189421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional analogue of the active site of polysulfide reductase from Wolinella succinogenes.
    Nagarajan K; Joshi HK; Chaudhury PK; Pal K; Cooney JJ; Enemark JH; Sarkar S
    Inorg Chem; 2004 Jul; 43(15):4532-3. PubMed ID: 15257571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of solvent viscosity on the rate-determining step of fatty acid synthetase.
    Kyushiki H; Ikai A
    Proteins; 1990; 8(3):287-93. PubMed ID: 2281089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactions of dimethylsulfoxide reductase from Rhodobacter capsulatus with dimethyl sulfide and with dimethyl sulfoxide: complexities revealed by conventional and stopped-flow spectrophotometry.
    Adams B; Smith AT; Bailey S; McEwan AG; Bray RC
    Biochemistry; 1999 Jun; 38(26):8501-11. PubMed ID: 10387097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DMSO respiration by the anaerobic rumen bacterium Wolinella succinogenes.
    Lorenzen J; Steinwachs S; Unden G
    Arch Microbiol; 1994; 162(4):277-81. PubMed ID: 7802544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution.
    Lancaster CR; Kröger A; Auer M; Michel H
    Nature; 1999 Nov; 402(6760):377-85. PubMed ID: 10586875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea.
    Zumft WG; Kroneck PM
    Adv Microb Physiol; 2007; 52():107-227. PubMed ID: 17027372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FTIR difference spectra of Wolinella succinogenes quinol:fumarate reductase support a key role of Glu C180 within the "E-pathway hypothesis" of coupled transmembrane electron and proton transfer.
    Haas AH; Sauer US; Gross R; Simon J; Mäntele W; Lancaster CR
    Biochemistry; 2005 Oct; 44(42):13949-61. PubMed ID: 16229484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.