These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 821545)

  • 1. [2-Amino-ethylphosphonic acid transport in Pseudomonas aeruginosa].
    Lacoste AM; Cassaigne A; Tamari M; Neuzil E
    Biochimie; 1976; 58(6):703-12. PubMed ID: 821545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and properties of 2-aminoethylphosphonate:pyruvate aminotransferase from Pseudomonas aeruginosa.
    Dumora C; Lacoste AM; Cassaigne A
    Eur J Biochem; 1983 Jun; 133(1):119-25. PubMed ID: 6406228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research on the catabolism of phosphonic acids: biodegradation of the C-P bond by Pseudomonas aeruginosa].
    Cassaigne A; Lacoste AM; Neuzil E
    C R Acad Hebd Seances Acad Sci D; 1976 May; 282(17):1637-9. PubMed ID: 820467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate starvation-independent 2-aminoethylphosphonic acid biodegradation in a newly isolated strain of Pseudomonas putida, NG2.
    Ternan NG; Quinn JP
    Syst Appl Microbiol; 1998 Aug; 21(3):346-52. PubMed ID: 9841125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Degradation of ciliatine (2-aminoethylphosphonic acid) by the mutant strain Tm-1 of Escherichia coli (author's transl)].
    Tamari M; Horiguchi M
    Seikagaku; 1976 Aug; 48(8):810-3. PubMed ID: 799167
    [No Abstract]   [Full Text] [Related]  

  • 6. Phosphonate utilization by bacteria.
    Cook AM; Daughton CG; Alexander M
    J Bacteriol; 1978 Jan; 133(1):85-90. PubMed ID: 618850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo incorporation of cytidine-monophosphate-ciliatine into rat liver lipids.
    Tamari M; Cassaigne A; Lacoste AM; Neuzil E
    Biochimie; 1975; 57(1):97-103. PubMed ID: 1148325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of two new microbial strains capable of degradation of the naturally occurring organophosphonate - ciliatine.
    Klimek-Ochab M; Obojska A; Picco AM; Lejczak B
    Biodegradation; 2007 Apr; 18(2):223-31. PubMed ID: 16758270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (beta-Chloro-alpha-aminoethyl)phosphonic acids as inhibitors of alanine racemase and D-alanine:D-alanine ligase.
    Vo-Quang Y; Carniato D; Vo-Quang L; Lacoste AM; Neuzil E; Le Goffic F
    J Med Chem; 1986 Jan; 29(1):148-51. PubMed ID: 3079831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of 2-aminoethylarsonic acid in Pseudomonas aeruginosa.
    Lacoste AM; Dumora C; Ali BR; Neuzil E; Dixon HB
    J Gen Microbiol; 1992 Jun; 138(6):1283-7. PubMed ID: 1527499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Kinetic characteristics and enantioselective action of penicillinase in the hydrolysis reaction of N-phenylacetyl derivatives of 1-aminoethylphosphonic acid and its esters].
    Mironenko DA; Kozlova EV; Shviadas VK; Solodenko VA; Kasheva TN; Kukhar' VP
    Biokhimiia; 1990 Jun; 55(6):1124-31. PubMed ID: 2207209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds.
    Krzyśko-Lupicka T; Strof W; Kubś K; Skorupa M; Wieczorek P; Lejczak B; Kafarski P
    Appl Microbiol Biotechnol; 1997 Oct; 48(4):549-52. PubMed ID: 9390463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of ciliatine (2-aminoethylphosphonic acid) and phosphonoalanine (2-amino-3-phosphonopropionic acid) in human tissues.
    Tan SA; Tan LG
    Clin Physiol Biochem; 1989; 7(6):303-9. PubMed ID: 2627760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transporter characterisation reveals aminoethylphosphonate mineralisation as a key step in the marine phosphorus redox cycle.
    Murphy ARJ; Scanlan DJ; Chen Y; Adams NBP; Cadman WA; Bottrill A; Bending G; Hammond JP; Hitchcock A; Wellington EMH; Lidbury IDEA
    Nat Commun; 2021 Jul; 12(1):4554. PubMed ID: 34315891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate transport in Pseudomonas aeruginosa. Involvement of a periplasmic phosphate-binding protein.
    Poole K; Hancock RE
    Eur J Biochem; 1984 Nov; 144(3):607-12. PubMed ID: 6436026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replacement of ethanolamine phosphate by 3-aminopropylphosphonate in the phospholipids of Tetrahymena.
    Smith JD; Giegel DA
    Arch Biochem Biophys; 1981 Feb; 206(2):420-3. PubMed ID: 6784681
    [No Abstract]   [Full Text] [Related]  

  • 17. Anion transport through the phosphate-specific OprP-channel of the Pseudomonas aeruginosa outer membrane: effects of phosphate, di- and tribasic anions and of negatively-charged lipids.
    Benz R; Egli C; Hancock RE
    Biochim Biophys Acta; 1993 Jul; 1149(2):224-30. PubMed ID: 8323941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biochemistry of C-P compounds in higher animal system, particularly, on the ciliatine-containing phosphonolipid (author's transl)].
    Tamari M
    Tanpakushitsu Kakusan Koso; 1976 Jan; 21(1):33-42. PubMed ID: 766084
    [No Abstract]   [Full Text] [Related]  

  • 19. 2-Aminoethylphosphonate utilization by the cold-adapted Geomyces pannorum P11 strain.
    Klimek-Ochab M; Mucha A; Zymańczyk-Duda E
    Curr Microbiol; 2014 Mar; 68(3):330-5. PubMed ID: 24162513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Natural compounds with biologic value containing a P-C bond and phosphonates].
    Neuzil E; Cassaigne A
    Expos Annu Biochim Med; 1980; 34():165-210. PubMed ID: 7009203
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.