These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 8215989)
61. Effect of early orthodontic force on periodontal healing after autotransplantation of permanent incisors in beagle dogs. Yang Y; Bai Y; Li S; Li J; Gao W; Ru N J Periodontol; 2012 Feb; 83(2):235-41. PubMed ID: 21692629 [TBL] [Abstract][Full Text] [Related]
62. [Biomechanical study on orthodontic tooth movement: changes in biomechanical property of the periodontal tissue in terms of tooth mobility]. Inoue Y Osaka Daigaku Shigaku Zasshi; 1989 Dec; 34(2):291-305. PubMed ID: 2488921 [TBL] [Abstract][Full Text] [Related]
63. Numerical simulations of canine retraction with T-loop springs based on the updated moment-to-force ratio. Kojima Y; Fukui H Eur J Orthod; 2012 Feb; 34(1):10-8. PubMed ID: 21135033 [TBL] [Abstract][Full Text] [Related]
64. Numeric simulations of en-masse space closure with sliding mechanics. Kojima Y; Fukui H Am J Orthod Dentofacial Orthop; 2010 Dec; 138(6):702.e1-6; discussion 702-4. PubMed ID: 21130318 [TBL] [Abstract][Full Text] [Related]
65. Physical properties of root cementum: part 6. A comparative quantitative analysis of the mineral composition of human premolar cementum after the application of orthodontic forces. Rex T; Kharbanda OP; Petocz P; Darendeliler MA Am J Orthod Dentofacial Orthop; 2006 Mar; 129(3):358-67. PubMed ID: 16527631 [TBL] [Abstract][Full Text] [Related]
66. Encoding of tooth loads by human periodontal afferents and their role in jaw motor control. Trulsson M; Johansson RS Prog Neurobiol; 1996 Jun; 49(3):267-84. PubMed ID: 8878305 [TBL] [Abstract][Full Text] [Related]
67. Orthodontic tooth movement and root resorption with special reference to force magnitude and duration. A clinical and histological investigation in adolescents. Owman-Moll P Swed Dent J Suppl; 1995; 105():1-45. PubMed ID: 7638765 [TBL] [Abstract][Full Text] [Related]
68. Biologic response of rapid tooth movement with periodontal ligament distraction. Lv T; Kang N; Wang C; Han X; Chen Y; Bai D Am J Orthod Dentofacial Orthop; 2009 Sep; 136(3):401-11. PubMed ID: 19732675 [TBL] [Abstract][Full Text] [Related]
70. Periodontal Biological Events Associated with Orthodontic Tooth Movement: The Biomechanics of the Cytoskeleton and the Extracellular Matrix. Feller L; Khammissa RA; Schechter I; Moodley A; Thomadakis G; Lemmer J ScientificWorldJournal; 2015; 2015():894123. PubMed ID: 26351659 [TBL] [Abstract][Full Text] [Related]
71. Tooth movement and changes in periodontal tissue in response to orthodontic force in rats vary depending on the time of day the force is applied. Miyoshi K; Igarashi K; Saeki S; Shinoda H; Mitani H Eur J Orthod; 2001 Aug; 23(4):329-38. PubMed ID: 11544782 [TBL] [Abstract][Full Text] [Related]
72. Influence of orthodontic forces on the distribution of proteoglycans in rat hypofunctional periodontal ligament. Esashika M; Kaneko S; Yanagishita M; Soma K J Med Dent Sci; 2003 Jun; 50(2):183-94. PubMed ID: 12968640 [TBL] [Abstract][Full Text] [Related]
73. Biological reaction of alveolar bone to orthodontic tooth movement. Melsen B Angle Orthod; 1999 Apr; 69(2):151-8. PubMed ID: 10227556 [TBL] [Abstract][Full Text] [Related]
74. Levels of matrix metalloproteinases 1 and 2 in human gingival crevicular fluid during initial tooth movement. Cantarella G; Cantarella R; Caltabiano M; Risuglia N; Bernardini R; Leonardi R Am J Orthod Dentofacial Orthop; 2006 Nov; 130(5):568.e11-6. PubMed ID: 17110252 [TBL] [Abstract][Full Text] [Related]
75. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Nishimura M; Chiba M; Ohashi T; Sato M; Shimizu Y; Igarashi K; Mitani H Am J Orthod Dentofacial Orthop; 2008 Apr; 133(4):572-83. PubMed ID: 18405822 [TBL] [Abstract][Full Text] [Related]
76. Forces applied by anterior and posterior teeth and roles of periodontal afferents during hold-and-split tasks in human subjects. Johnsen SE; Svensson KG; Trulsson M Exp Brain Res; 2007 Mar; 178(1):126-34. PubMed ID: 17031682 [TBL] [Abstract][Full Text] [Related]
77. A biomechanical case study on the optimal orthodontic force on the maxillary canine tooth based on finite element analysis. Wu JL; Liu YF; Peng W; Dong HY; Zhang JX J Zhejiang Univ Sci B; 2018 Jul; 19(7):535-546. PubMed ID: 29971992 [TBL] [Abstract][Full Text] [Related]
78. Digital design and fabrication of simulation model for measuring orthodontic force. Liu YF; Zhang PY; Zhang QF; Zhang JX; Chen J Biomed Mater Eng; 2014; 24(6):2265-71. PubMed ID: 25226926 [TBL] [Abstract][Full Text] [Related]
79. Experimental tooth movement under light orthodontic forces: rates of tooth movement and changes of the periodontium. Kohno T; Matsumoto Y; Kanno Z; Warita H; Soma K J Orthod; 2002 Jun; 29(2):129-35. PubMed ID: 12114463 [TBL] [Abstract][Full Text] [Related]
80. Three-dimensional finite element analysis of stress in the periodontal ligament of the maxillary first molar with simulated bone loss. Jeon PD; Turley PK; Ting K Am J Orthod Dentofacial Orthop; 2001 May; 119(5):498-504. PubMed ID: 11343021 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]