These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 8216029)
21. Responses of trigeminal brain stem neurons and the digastric muscle to tooth-pulp stimulation in awake cats. Boissonade FM; Matthews B J Neurophysiol; 1993 Jan; 69(1):174-86. PubMed ID: 8433129 [TBL] [Abstract][Full Text] [Related]
22. Dynamic changes of touch- and laser heat-evoked field potentials of primary somatosensory cortex in awake and pentobarbital-anesthetized rats. Shaw FZ; Chen RF; Yen CT Brain Res; 2001 Aug; 911(2):105-15. PubMed ID: 11511377 [TBL] [Abstract][Full Text] [Related]
23. Middle-latency auditory-evoked potential in acepromazine-sedated dogs. Murrell JC; de Groot HN; Venker-van Haagen AJ; van den Brom WE; Hellebrekers LJ J Vet Intern Med; 2004; 18(2):196-200. PubMed ID: 15058770 [TBL] [Abstract][Full Text] [Related]
24. Perceptual organization of tone sequences in the auditory cortex of awake macaques. Micheyl C; Tian B; Carlyon RP; Rauschecker JP Neuron; 2005 Oct; 48(1):139-48. PubMed ID: 16202714 [TBL] [Abstract][Full Text] [Related]
25. Auditory brainstem, middle and late latency responses to short gaps in noise at different presentation rates. Alhussaini K; Bohorquez J; Delgado RE; Ozdamar O Int J Audiol; 2018 Jun; 57(6):399-406. PubMed ID: 29378459 [TBL] [Abstract][Full Text] [Related]
26. Single-sided deafness leads to unilateral aural preference within an early sensitive period. Kral A; Hubka P; Heid S; Tillein J Brain; 2013 Jan; 136(Pt 1):180-93. PubMed ID: 23233722 [TBL] [Abstract][Full Text] [Related]
27. Cortical deafness cannot account for the inability of Japanese macaques to discriminate species-specific vocalizations. Heffner HE; Heffner RS Brain Lang; 1989 Feb; 36(2):275-85. PubMed ID: 2920286 [TBL] [Abstract][Full Text] [Related]
28. The effects of nembutal anesthesia on the auditory steady-state response (ASSR) from the inferior colliculus and auditory cortex of the chinchilla. Szalda K; Burkard R Hear Res; 2005 May; 203(1-2):32-44. PubMed ID: 15855028 [TBL] [Abstract][Full Text] [Related]
29. Algorithmic complexity as an index of cortical function in awake and pentobarbital-anesthetized rats. Shaw FZ; Chen RF; Tsao HW; Yen CT J Neurosci Methods; 1999 Nov; 93(2):101-10. PubMed ID: 10634495 [TBL] [Abstract][Full Text] [Related]
31. Binaural interaction in the auditory middle latency response of the guinea pig. Ozdamar O; Kraus N; Grossmann J Electroencephalogr Clin Neurophysiol; 1986 May; 63(5):476-83. PubMed ID: 2420563 [TBL] [Abstract][Full Text] [Related]
32. The auditory middle latency response, evoked using maximum length sequences and chirps, as an indicator of adequacy of anesthesia. Bell SL; Smith DC; Allen R; Lutman ME Anesth Analg; 2006 Feb; 102(2):495-8. PubMed ID: 16428549 [TBL] [Abstract][Full Text] [Related]
33. Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials. Matsumura M; Cope T; Fetz EE Exp Brain Res; 1988; 70(3):463-9. PubMed ID: 3384047 [TBL] [Abstract][Full Text] [Related]
34. [Interaction of the associative responses in the parietal cortex to stimuli of different modalities in awake Macacus rhesus monkeys]. Tairov OP; Khasabova VA Zh Evol Biokhim Fiziol; 1974; 10(5):496-502. PubMed ID: 4216214 [No Abstract] [Full Text] [Related]
35. Neurophysiology of cochlear implant users I: effects of stimulus current level and electrode site on the electrical ABR, MLR, and N1-P2 response. Firszt JB; Chambers RD; Kraus And N; Reeder RM Ear Hear; 2002 Dec; 23(6):502-15. PubMed ID: 12476088 [TBL] [Abstract][Full Text] [Related]
36. Investigation of changes in the middle latency auditory evoked potential during anesthesia with sevoflurane in dogs. Murrell JC; de Groot HN; Psatha E; Hellebrekers LJ Am J Vet Res; 2005 Jul; 66(7):1156-61. PubMed ID: 16111152 [TBL] [Abstract][Full Text] [Related]
37. Neural lateralization of vocalizations by Japanese macaques: communicative significance is more important than acoustic structure. Petersen MR; Beecher MD; Zoloth SR; Green S; Marler PR; Moody DB; Stebbins WC Behav Neurosci; 1984 Oct; 98(5):779-90. PubMed ID: 6487413 [TBL] [Abstract][Full Text] [Related]
38. Representations of cat meows and human vowels in the primary auditory cortex of awake cats. Qin L; Wang JY; Sato Y J Neurophysiol; 2008 May; 99(5):2305-19. PubMed ID: 18305087 [TBL] [Abstract][Full Text] [Related]
39. Influence of auditory stimulation rates on evoked potentials during general anesthesia: relation between the transient auditory middle-latency response and the 40-Hz auditory steady state response. McNeer RR; Bohórquez J; Ozdamar O Anesthesiology; 2009 May; 110(5):1026-35. PubMed ID: 19352165 [TBL] [Abstract][Full Text] [Related]
40. Song system auditory responses are stable and highly tuned during sedation, rapidly modulated and unselective during wakefulness, and suppressed by arousal. Cardin JA; Schmidt MF J Neurophysiol; 2003 Nov; 90(5):2884-99. PubMed ID: 12878713 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]