BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8216508)

  • 1. Transport and metabolism of glucose and arabinose in Bifidobacterium breve.
    Degnan BA; Macfarlane GT
    Arch Microbiol; 1993; 160(2):144-51. PubMed ID: 8216508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of carbohydrate substrate preferences in eight species of bifidobacteria.
    Degnan BA; Macfarlane GT
    FEMS Microbiol Lett; 1991 Nov; 68(2):151-6. PubMed ID: 1778437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of glucose by Bifidobacterium animalis subsp. lactis occurs via facilitated diffusion.
    Briczinski EP; Phillips AT; Roberts RF
    Appl Environ Microbiol; 2008 Nov; 74(22):6941-8. PubMed ID: 18791026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system.
    Cvitkovitch DG; Boyd DA; Thevenot T; Hamilton IR
    J Bacteriol; 1995 May; 177(9):2251-8. PubMed ID: 7730250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the lactose transport system in the strain Bifidobacterium bifidum DSM 20082.
    Krzewinski F; Brassart C; Gavini F; Bouquelet S
    Curr Microbiol; 1996 Jun; 32(6):301-7. PubMed ID: 8640105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose transport in Streptococcus salivarius. Evidence for the presence of a distinct phosphoenolpyruvate: glucose phosphotransferase system which catalyses the phosphorylation of alpha-methyl glucoside.
    Vadeboncoeur C; Trahan L
    Can J Microbiol; 1982 Feb; 28(2):190-9. PubMed ID: 7066764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological studies on regulation of glycerol utilization by the phosphoenolpyruvate:sugar phosphotransferase system in Enterococcus faecalis.
    Romano AH; Saier MH; Harriott OT; Reizer J
    J Bacteriol; 1990 Dec; 172(12):6741-8. PubMed ID: 2123855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose transport in isolated rat adipocytes with measurements of L-arabinose uptake.
    Foley JE; Cushman SW; Salans LB
    Am J Physiol; 1978 Feb; 234(2):E112-9. PubMed ID: 623288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose and galactose transport in Bifidobacterium bifidum DSM 20082.
    Krzewinski F; Brassart C; Gavini F; Bouquelet S
    Curr Microbiol; 1997 Sep; 35(3):175-9. PubMed ID: 9236301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota.
    Pastell H; Westermann P; Meyer AS; Tuomainen P; Tenkanen M
    J Agric Food Chem; 2009 Sep; 57(18):8598-606. PubMed ID: 19694435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of a glucose proton motive force-dependent permease and a fructose phosphoenolpyruvate:phosphotransferase transport system in Lactobacillus reuteri CRL 1098.
    Taranto MP; Font de Valdez G; Perez-Martinez G
    FEMS Microbiol Lett; 1999 Dec; 181(1):109-12. PubMed ID: 10564795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System.
    Jeckelmann JM; Erni B
    Subcell Biochem; 2019; 92():223-274. PubMed ID: 31214989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbohydrate utilization patterns and substrate preferences in Bacteroides thetaiotaomicron.
    Degnan BA; Macfarlane GT
    Anaerobe; 1995 Feb; 1(1):25-33. PubMed ID: 16887504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar phosphorylation activity in ruminal acetogens.
    Jiang W; Pinder RS; Patterson JA; Ricke SC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):843-6. PubMed ID: 22423990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoenolpyruvate-dependent glucose phosphotransferase activity in Streptococcus mitis ATCC 903.
    Roberts KR; Linder L
    Scand J Dent Res; 1980 Aug; 88(4):316-22. PubMed ID: 6934615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different utilization of glucose and raffinose in Bifidobacterium breve and Bifidobacterium animalis.
    Trojanová I; Vlková E; Rada V; Marounek M
    Folia Microbiol (Praha); 2006; 51(4):320-4. PubMed ID: 17007436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc.
    Hogema BM; Arents JC; Bader R; Eijkemans K; Yoshida H; Takahashi H; Aiba H; Postma PW
    Mol Microbiol; 1998 Nov; 30(3):487-98. PubMed ID: 9822815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose transport in Salmonella typhimurium and Escherichia coli.
    Postma PW; Neyssel OM; van Ree R
    Eur J Biochem; 1982 Mar; 123(1):113-9. PubMed ID: 7040073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose phosphoenolpyruvate phosphotransferase activity and glucose uptake rate of Klebsiella aerogenes growing in chemostat culture.
    O'Brien RW; Neijssel OM; Tempest DW
    J Gen Microbiol; 1980 Feb; 116(2):305-14. PubMed ID: 6989955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.