BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8216508)

  • 21. Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cerevisiae strain reveals mutations in GAL2 that enable glucose-insensitive l-arabinose uptake.
    Verhoeven MD; Bracher JM; Nijland JG; Bouwknegt J; Daran JG; Driessen AJM; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29860442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of growth conditions on the Streptococcus bovis phosphoenolpyruvate glucose phosphotransferase system.
    Moore GA; Martin SA
    J Anim Sci; 1991 Dec; 69(12):4967-73. PubMed ID: 1808190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The glucose-specific carrier of the Escherichia coli phosphotransferase system.
    García-Alles LF; Navdaeva V; Haenni S; Erni B
    Eur J Biochem; 2002 Oct; 269(20):4969-80. PubMed ID: 12383255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sorbitol inhibition of glucose metabolism by Streptococcus sanguis 160.
    Hamilton IR; Svensater G
    Oral Microbiol Immunol; 1991 Jun; 6(3):151-9. PubMed ID: 1945498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of hypophysectomy and cell isolation on the transport of L-arabinose by adipocytes.
    Coiro V; Grichting G; Kominz D; Goodman HM
    Endocrinology; 1985 Jan; 116(1):207-17. PubMed ID: 3880539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphoenolpyruvate-dependent phosphorylation of sucrose by Clostridium tyrobutyricum ZJU 8235: evidence for the phosphotransferase transport system.
    Jiang L; Cai J; Wang J; Liang S; Xu Z; Yang ST
    Bioresour Technol; 2010 Jan; 101(1):304-9. PubMed ID: 19726178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pentose transport by the ruminal bacterium Butyrivibrio fibrisolvens.
    Strobel HJ
    FEMS Microbiol Lett; 1994 Oct; 122(3):217-22. PubMed ID: 7988863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competition between two pathways for sugar uptake by the phosphoenolpyruvate-dependent sugar phosphotransferase system in Salmonella typhimurium.
    Scholte BJ; Postma PW
    Eur J Biochem; 1981; 114(1):51-8. PubMed ID: 7011803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase.
    Aboulwafa M; Hvorup R; Saier MH
    Arch Microbiol; 2004 Jan; 181(1):26-34. PubMed ID: 14634719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pathway engineering for the production of aromatic compounds in Escherichia coli.
    Flores N; Xiao J; Berry A; Bolivar F; Valle F
    Nat Biotechnol; 1996 May; 14(5):620-3. PubMed ID: 9630954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.
    Kawaguchi H; Yoshihara K; Hara KY; Hasunuma T; Ogino C; Kondo A
    Microb Cell Fact; 2018 May; 17(1):76. PubMed ID: 29773073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Sugar phosphorylation activities in acetogenic bacteria].
    Jiang W; Patterson JA
    Wei Sheng Wu Xue Bao; 1999 Dec; 39(6):539-45. PubMed ID: 12555560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell.
    Gabor E; Göhler AK; Kosfeld A; Staab A; Kremling A; Jahreis K
    Eur J Cell Biol; 2011 Sep; 90(9):711-20. PubMed ID: 21621292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose.
    Hasona A; Kim Y; Healy FG; Ingram LO; Shanmugam KT
    J Bacteriol; 2004 Nov; 186(22):7593-600. PubMed ID: 15516572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius.
    Thevenot T; Brochu D; Vadeboncoeur C; Hamilton IR
    J Bacteriol; 1995 May; 177(10):2751-9. PubMed ID: 7751285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a glucose-mannose phosphotransferase system in Clostridium beijerinckii.
    Essalem ME; Mitchell WJ
    FEMS Microbiol Lett; 2016 Apr; 363(8):. PubMed ID: 26940293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucose uptake by Klebsiella aerogenes. The role of the glucose-phosphoenolpyruvate phosphotransferase transport system [proceedings].
    O'Brien RW; Neijssel OM; Tempest DW
    Antonie Van Leeuwenhoek; 1979; 45(2):315. PubMed ID: 386946
    [No Abstract]   [Full Text] [Related]  

  • 38. Evidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101.
    Lee J; Mitchell WJ; Tangney M; Blaschek HP
    Appl Environ Microbiol; 2005 Jun; 71(6):3384-7. PubMed ID: 15933048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of sugar uptake via the phosphoenolpyruvate-dependent phosphotransferase systems in Bacillus subtilis and Lactococcus lactis is mediated by ATP-dependent phosphorylation of seryl residue 46 in HPr.
    Ye JJ; Saier MH
    J Bacteriol; 1996 Jun; 178(12):3557-63. PubMed ID: 8655554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glucose uptake by the cellulolytic ruminal anaerobe Bacteroides succinogenes.
    Franklund CV; Glass TL
    J Bacteriol; 1987 Feb; 169(2):500-6. PubMed ID: 3804970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.