These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 8217516)
1. Heat resistance of fungi from soil. Jesenská Z; Piecková E; Bernát D Int J Food Microbiol; 1993 Aug; 19(3):187-92. PubMed ID: 8217516 [TBL] [Abstract][Full Text] [Related]
2. Heat-resistant fungi in the soil. Jesenská Z; Piecková E; Bernát D Int J Food Microbiol; 1992 Jul; 16(3):209-14. PubMed ID: 1445767 [TBL] [Abstract][Full Text] [Related]
3. Heat resistant fungi isolated from soil. Piecková E; Bernát D; Jesenská Z Int J Food Microbiol; 1994 Jun; 22(4):297-9. PubMed ID: 7986681 [TBL] [Abstract][Full Text] [Related]
4. Incidence of heat-resistant fungi in Nsukka, southern Nigeria. Ugwuanyi JO; Obeta JA Int J Food Microbiol; 1991 Jun; 13(2):157-64. PubMed ID: 1909547 [TBL] [Abstract][Full Text] [Related]
5. Incidence of heat-resistant molds in eastern orchards and vineyards. Splittstoesser DF; Kuss FR; Harrison W; Prest DB Appl Microbiol; 1971 Feb; 21(2):335-7. PubMed ID: 5544294 [TBL] [Abstract][Full Text] [Related]
6. Toxinogenicity of heat-resistant fungi detected by a bio-assay. Piecková E; Jesenská Z Int J Food Microbiol; 1997 May; 36(2-3):227-9. PubMed ID: 9217113 [TBL] [Abstract][Full Text] [Related]
7. Using extended Bigelow meta-regressions for modelling the effects of temperature, pH, °Brix on the inactivation of heat resistant moulds. Alvarenga VO; Gonzales-Barron U; do Prado Silva L; Cadavez V; Sant'Ana AS Int J Food Microbiol; 2021 Jan; 338():108985. PubMed ID: 33334619 [TBL] [Abstract][Full Text] [Related]
8. Occurrence and ecological distribution of Heat Resistant Moulds Spores (HRMS) in raw materials used by food industry and thermal characterization of two Talaromyces isolates. Tranquillini R; Scaramuzza N; Berni E Int J Food Microbiol; 2017 Feb; 242():116-123. PubMed ID: 27988465 [TBL] [Abstract][Full Text] [Related]
9. Heat-resistant fungi of importance to the food and beverage industry. Tournas V Crit Rev Microbiol; 1994; 20(4):243-63. PubMed ID: 7857517 [TBL] [Abstract][Full Text] [Related]
10. Heat activation of Neosartorya and Talaromyces ascospores and enhancement by organic acids. Kikoku Y; Tagashira N; Gabriel AA; Nakano H Biocontrol Sci; 2009 Sep; 14(3):87-95. PubMed ID: 19785281 [TBL] [Abstract][Full Text] [Related]
11. Fungi of virgin and cultivated soil of Salhiah Desert, Egypt. el-Gindy AA; Saad RR Zentralbl Mikrobiol; 1990; 145(7):547-51. PubMed ID: 2077791 [TBL] [Abstract][Full Text] [Related]
12. Comparing thermal inactivation to a combined process of moderate heat and high pressure: Effect on ascospores in strawberry puree. Timmermans R; Hayrapetyan H; Vollebregt M; Dijksterhuis J Int J Food Microbiol; 2020 Jul; 325():108629. PubMed ID: 32325344 [TBL] [Abstract][Full Text] [Related]
13. Effect of storage temperature, water activity, oxygen headspace concentration and pasteurization intensity on the time to growth of Aspergillus fischerianus (teleomorph Neosartorya fischeri). Dos Santos JLP; Samapundo S; Djunaidi S; Vermeulen A; Sant'Ana AS; Van Impe J; Devlieghere F Food Microbiol; 2020 Jun; 88():103406. PubMed ID: 31997762 [TBL] [Abstract][Full Text] [Related]
14. Functionality and prevalence of trehalose-based oligosaccharides as novel compatible solutes in ascospores of Neosartorya fischeri (Aspergillus fischeri) and other fungi. Wyatt TT; van Leeuwen MR; Golovina EA; Hoekstra FA; Kuenstner EJ; Palumbo EA; Snyder NL; Visagie C; Verkennis A; Hallsworth JE; Wösten HA; Dijksterhuis J Environ Microbiol; 2015 Feb; 17(2):395-411. PubMed ID: 25040129 [TBL] [Abstract][Full Text] [Related]
15. Heat-resistance of Hamigera avellanea and Thermoascus crustaceus isolated from pasteurized acid products. Scaramuzza N; Berni E Int J Food Microbiol; 2014 Jan; 168-169():63-8. PubMed ID: 24239977 [TBL] [Abstract][Full Text] [Related]
16. Growth modelling of heat-resistant fungi: the effect of water activity. Valík L; Piecková E Int J Food Microbiol; 2001 Jan; 63(1-2):11-7. PubMed ID: 11205942 [TBL] [Abstract][Full Text] [Related]
17. Occurrence of itraconazole-tolerant micromycetes in the soil and food products. Piecková E; Jesenská Z Folia Microbiol (Praha); 1999; 44(6):677-82. PubMed ID: 11097027 [TBL] [Abstract][Full Text] [Related]
18. Assessment of minimum oxygen concentrations for the growth of heat-resistant moulds. Santos JLPD; Samapundo S; Pimentel GC; Van Impe J; Sant'Ana AS; Devlieghere F Food Microbiol; 2019 Dec; 84():103243. PubMed ID: 31421750 [TBL] [Abstract][Full Text] [Related]
19. Target selection in designing pasteurization processes for shelf-stable high-acid fruit products. Silva FV; Gibbs P Crit Rev Food Sci Nutr; 2004; 44(5):353-60. PubMed ID: 15540648 [TBL] [Abstract][Full Text] [Related]
20. Inter- and intra-species variability in heat resistance and the effect of heat treatment intensity on subsequent growth of Byssochlamys fulva and Byssochlamys nivea. Santos JLP; Samapundo S; Gülay SM; Van Impe J; Sant'Ana AS; Devlieghere F Int J Food Microbiol; 2018 Aug; 279():80-87. PubMed ID: 29751279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]