These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 8218220)

  • 21. Oxidation of low molecular weight chloroalkanes by cytochrome P450CAM.
    Lefever MR; Wackett LP
    Biochem Biophys Res Commun; 1994 May; 201(1):373-8. PubMed ID: 8198597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectral intermediate in the reaction of ferrous cytochrome P450cam with superoxide anion.
    Kobayashi K; Iwamoto T; Honda K
    Biochem Biophys Res Commun; 1994 Jun; 201(3):1348-55. PubMed ID: 8024579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reductive dehalogenation by cytochrome P450CAM: substrate binding and catalysis.
    Li S; Wackett LP
    Biochemistry; 1993 Sep; 32(36):9355-61. PubMed ID: 8369306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling the regiospecificity and coupling of cytochrome P450cam: T185F mutant increases coupling and abolishes 3-hydroxynorcamphor product.
    Paulsen MD; Filipovic D; Sligar SG; Ornstein RL
    Protein Sci; 1993 Mar; 2(3):357-65. PubMed ID: 8453374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water oxidation by a cytochrome p450: mechanism and function of the reaction.
    Prasad B; Mah DJ; Lewis AR; Plettner E
    PLoS One; 2013; 8(4):e61897. PubMed ID: 23634216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved binding of cytochrome P450cam substrate analogues designed to fill extra space in the substrate binding pocket.
    Helms V; Deprez E; Gill E; Barret C; Hui Bon Hoa G; Wade RC
    Biochemistry; 1996 Feb; 35(5):1485-99. PubMed ID: 8634279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydroxylation of camphor by reduced oxy-cytochrome P450cam: mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes.
    Davydov R; Makris TM; Kofman V; Werst DE; Sligar SG; Hoffman BM
    J Am Chem Soc; 2001 Feb; 123(7):1403-15. PubMed ID: 11456714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Examination of the reaction of fully reduced cytochrome oxidase with hydrogen peroxide by flow-flash spectroscopy.
    Zaslavsky D; Smirnova IA; Brzezinski P; Shinzawa-Itoh K; Yoshikawa S; Gennis RB
    Biochemistry; 1999 Nov; 38(48):16016-23. PubMed ID: 10625470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of the cytochrome P-450CAM active site mutant Thr252Ala.
    Raag R; Martinis SA; Sligar SG; Poulos TL
    Biochemistry; 1991 Dec; 30(48):11420-9. PubMed ID: 1742281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxygen activation by cytochrome P450BM-3: effects of mutating an active site acidic residue.
    Yeom H; Sligar SG
    Arch Biochem Biophys; 1997 Jan; 337(2):209-16. PubMed ID: 9016815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome P-450CAM.
    Raag R; Poulos TL
    Biochemistry; 1989 Jan; 28(2):917-22. PubMed ID: 2713354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cytochrome P-450cam binding surface as defined by site-directed mutagenesis and electrostatic modeling.
    Stayton PS; Sligar SG
    Biochemistry; 1990 Aug; 29(32):7381-6. PubMed ID: 2223769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical study of the product specificity in the hydroxylation of camphor, norcamphor, 5,5-difluorocamphor, and pericyclocamphanone by cytochrome P-450cam.
    Collins JR; Loew GH
    J Biol Chem; 1988 Mar; 263(7):3164-70. PubMed ID: 3343243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substrate mobility in thiocamphor-bound cytochrome P450cam: an explanation of the conflict between the observed product profile and the X-ray structure.
    Paulsen MD; Ornstein RL
    Protein Eng; 1993 Jun; 6(4):359-65. PubMed ID: 8332592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peroxo-iron and oxenoid-iron species as alternative oxygenating agents in cytochrome P450-catalyzed reactions: switching by threonine-302 to alanine mutagenesis of cytochrome P450 2B4.
    Vaz AD; Pernecky SJ; Raner GM; Coon MJ
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4644-8. PubMed ID: 8643457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome p450.
    Kamachi T; Yoshizawa K
    J Am Chem Soc; 2003 Apr; 125(15):4652-61. PubMed ID: 12683838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous detection of NADPH consumption and H
    Morlock LK; Böttcher D; Bornscheuer UT
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):985-994. PubMed ID: 29150709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A critical role of protein-bound water in the catalytic cycle of cytochrome P-450 camphor.
    Di Primo C; Sligar SG; Hoa GH; Douzou P
    FEBS Lett; 1992 Nov; 312(2-3):252-4. PubMed ID: 1426259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.