These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8218238)

  • 1. Acyl structure regulates galactosylceramide's interfacial interactions.
    Ali S; Smaby JM; Brown RE
    Biochemistry; 1993 Nov; 32(43):11696-703. PubMed ID: 8218238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol's interfacial interactions with galactosylceramides.
    Ali S; Smaby JM; Brockman HL; Brown RE
    Biochemistry; 1994 Mar; 33(10):2900-6. PubMed ID: 8130203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural determinants of miscibility in surface films of galactosylceramide and phosphatidylcholine: effect of unsaturation in the galactosylceramide acyl chain.
    Ali S; Brockman HL; Brown RE
    Biochemistry; 1991 Nov; 30(47):11198-205. PubMed ID: 1958657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilayer nanotubes and helical ribbons formed by hydrated galactosylceramides: acyl chain and headgroup effects.
    Kulkarni VS; Anderson WH; Brown RE
    Biophys J; 1995 Nov; 69(5):1976-86. PubMed ID: 8580341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol-induced interfacial area condensations of galactosylceramides and sphingomyelins with identical acyl chains.
    Smaby JM; Momsen M; Kulkarni VS; Brown RE
    Biochemistry; 1996 May; 35(18):5696-704. PubMed ID: 8639529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines.
    Smaby JM; Kulkarni VS; Momsen M; Brown RE
    Biophys J; 1996 Feb; 70(2):868-77. PubMed ID: 8789104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermotropic behavior of galactosylceramides with cis-monoenoic fatty acyl chains.
    Kulkarni VS; Brown RE
    Biochim Biophys Acta; 1998 Jul; 1372(2):347-58. PubMed ID: 9675335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymorphic phases of galactocerebrosides: spectroscopic evidence of lamellar crystalline structures.
    Bou Khalil M; Carrier D; Wong PT; Tanphaichitr N
    Biochim Biophys Acta; 2001 Jun; 1512(2):158-70. PubMed ID: 11406093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of pathogenesis in twitcher mouse, an enzymatically authentic model of Krabbe's disease.
    Inui K; Nishimoto J; Taniike M; Midorikawa M; Tsukamoto H; Okada S; Yabuuchi H
    J Neurol Sci; 1990 Dec; 100(1-2):124-30. PubMed ID: 2128519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingomyelin interfacial behavior: the impact of changing acyl chain composition.
    Li XM; Smaby JM; Momsen MM; Brockman HL; Brown RE
    Biophys J; 2000 Apr; 78(4):1921-31. PubMed ID: 10733971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galactosylceramide and galactosylsphingosine loading studies in cultured skin fibroblasts in human and murine globoid cell leukodystrophy.
    Ida H; Kusano K; Suzuki H; Tokoro T; Eto Y
    Biochem Biophys Res Commun; 1990 Jan; 166(2):1053-60. PubMed ID: 2302222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase behavior of galactocerebrosides from bovine brain.
    Curatolo W; Jungalwala FB
    Biochemistry; 1985 Nov; 24(23):6608-13. PubMed ID: 4084544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acyl chain-length asymmetry alters the interfacial elastic interactions of phosphatidylcholines.
    Ali S; Smaby JM; Momsen MM; Brockman HL; Brown RE
    Biophys J; 1998 Jan; 74(1):338-48. PubMed ID: 9449334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid-phase chain unsaturation controlling domain microstructure and phase in ternary lipid bilayers containing GalCer and cholesterol.
    Lin WC; Blanchette CD; Longo ML
    Biophys J; 2007 Apr; 92(8):2831-41. PubMed ID: 17237202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macro-ripple phase formation in bilayers composed of galactosylceramide and phosphatidylcholine.
    Brown RE; Anderson WH; Kulkarni VS
    Biophys J; 1995 Apr; 68(4):1396-405. PubMed ID: 7787025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations and 2H NMR study of the GalCer/DPPG lipid bilayer.
    Zaraiskaya T; Jeffrey KR
    Biophys J; 2005 Jun; 88(6):4017-31. PubMed ID: 15764671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphatidylcholine acyl unsaturation modulates the decrease in interfacial elasticity induced by cholesterol.
    Smaby JM; Momsen MM; Brockman HL; Brown RE
    Biophys J; 1997 Sep; 73(3):1492-505. PubMed ID: 9284316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactosylceramide: effect of acyl chain structure on phase behavior and molecular packing.
    Li XM; Momsen MM; Brockman HL; Brown RE
    Biophys J; 2002 Sep; 83(3):1535-46. PubMed ID: 12202378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of nanotube formation by structural modifications of sphingolipids.
    Kulkarni VS; Boggs JM; Brown RE
    Biophys J; 1999 Jul; 77(1):319-30. PubMed ID: 10388760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular organization of α-galactosylceramide in pure dispersions and in cationic DODAB bilayers.
    Martins LS; Duarte EL; Lamy MT; Rozenfeld JHK
    Chem Phys Lipids; 2020 Oct; 232():104963. PubMed ID: 32882224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.