These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8218268)

  • 21. Carbon Acidity in Enzyme Active Sites.
    Toney MD
    Front Bioeng Biotechnol; 2019; 7():25. PubMed ID: 30838206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Breaking bonds with electrons and protons. Models and examples.
    Costentin C; Robert M; Savéant JM; Tard C
    Acc Chem Res; 2014 Jan; 47(1):271-80. PubMed ID: 24016042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary dynamics of enzymes.
    Demetrius L
    Protein Eng; 1995 Aug; 8(8):791-800. PubMed ID: 8637848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic study on the acylation step of alpha-chymotrypsin-catalyzed hydrolysis of acylimidazole. A model reaction of specific peptide substrate activated by binding to the enzyme.
    Ikeda K; Kunugi S
    J Biochem; 1980 Oct; 88(4):977-86. PubMed ID: 7451425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of the reaction catalyzed by mandelate racemase: importance of electrophilic catalysis by glutamic acid 317.
    Mitra B; Kallarakal AT; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1995 Mar; 34(9):2777-87. PubMed ID: 7893689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactivity descriptors in acid catalysis: acid strength, proton affinity and host-guest interactions.
    Deshlahra P; Iglesia E
    Chem Commun (Camb); 2020 Jul; 56(54):7371-7398. PubMed ID: 32568324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic roles for proton transfer and protonation in ribozymes.
    Bevilacqua PC; Brown TS; Nakano S; Yajima R
    Biopolymers; 2004 Jan; 73(1):90-109. PubMed ID: 14691943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The enolase superfamily: a general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids.
    Babbitt PC; Hasson MS; Wedekind JE; Palmer DR; Barrett WC; Reed GH; Rayment I; Ringe D; Kenyon GL; Gerlt JA
    Biochemistry; 1996 Dec; 35(51):16489-501. PubMed ID: 8987982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond the classical thermodynamic contributions to hydrogen atom abstraction reactivity.
    Bím D; Maldonado-Domínguez M; Rulíšek L; Srnec M
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):E10287-E10294. PubMed ID: 30254163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transpeptidation reactions of a specific substrate catalyzed by the Streptomyces R61 DD-peptidase: the structural basis of acyl acceptor specificity.
    Kumar I; Pratt RF
    Biochemistry; 2005 Aug; 44(30):9961-70. PubMed ID: 16042373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrophilic coordination catalysis: a summary of previous thought and a new angle of analysis.
    Houk RJ; Monzingo A; Anslyn EV
    Acc Chem Res; 2008 Mar; 41(3):401-10. PubMed ID: 18229891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the D270N mutant.
    Schafer SL; Barrett WC; Kallarakal AT; Mitra B; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1996 May; 35(18):5662-9. PubMed ID: 8639525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Forces, bond lengths, and reactivity: fundamental insight into the mechanism of enzyme catalysis.
    Tonge PJ; Carey PR
    Biochemistry; 1992 Sep; 31(38):9122-5. PubMed ID: 1390699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase.
    Adediran SA; Pratt RF
    Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A classical but new kinetic equation for hydride transfer reactions.
    Zhu XQ; Deng FH; Yang JD; Li XT; Chen Q; Lei NP; Meng FK; Zhao XP; Han SH; Hao EJ; Mu YY
    Org Biomol Chem; 2013 Sep; 11(36):6071-89. PubMed ID: 23917398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: the beta-neopentylcobalamin system combined with prior adocobalamin data.
    Doll KM; Finke RG
    Inorg Chem; 2003 Aug; 42(16):4849-56. PubMed ID: 12895106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthetic Applications of Proton-Coupled Electron Transfer.
    Gentry EC; Knowles RR
    Acc Chem Res; 2016 Aug; 49(8):1546-56. PubMed ID: 27472068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamics of a protein acylation: activation of Escherichia coli hemolysin toxin.
    Worsham LM; Langston KG; Ernst-Fonberg ML
    Biochemistry; 2005 Feb; 44(4):1329-37. PubMed ID: 15667226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slow-binding inhibition of gamma-glutamyl transpeptidase by gamma-boroGlu.
    Stein RL; DeCicco C; Nelson D; Thomas B
    Biochemistry; 2001 May; 40(19):5804-11. PubMed ID: 11341846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of phosphoryl and acyl transfer.
    Cleland WW; Hengge AC
    FASEB J; 1995 Dec; 9(15):1585-94. PubMed ID: 8529838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.