These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8218561)

  • 61. Electron transfer reactions of copper proteins.
    Holwerda RA; Wherland S; Gray HB
    Annu Rev Biophys Bioeng; 1976; 5():363-96. PubMed ID: 821386
    [No Abstract]   [Full Text] [Related]  

  • 62. Copurification of the FpvA ferric pyoverdin receptor of Pseudomonas aeruginosa with its iron-free ligand: implications for siderophore-mediated iron transport.
    Schalk IJ; Kyslik P; Prome D; van Dorsselaer A; Poole K; Abdallah MA; Pattus F
    Biochemistry; 1999 Jul; 38(29):9357-65. PubMed ID: 10413510
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A re-evaluation of some basic structural and functional properties of Pseudomonas cytochrome oxidase.
    Silvestrini MC; Colosimo A; Brunori M; Walsh TA; Barber D; Greenwood C
    Biochem J; 1979 Dec; 183(3):701-9. PubMed ID: 44192
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biological significance of Pseudomonas cytochrome oxidase in Pseudomonas aeruginosa.
    YAMANAKA T; KIJIMOTO S; OKUNUKI K
    J Biochem; 1963 May; 53():416-21. PubMed ID: 14002367
    [No Abstract]   [Full Text] [Related]  

  • 65. Pseudomonas aeruginosa cytochrome C(551): probing the role of the hydrophobic patch in electron transfer.
    CutruzzolĂ  F; Arese M; Ranghino G; van Pouderoyen G; Canters G; Brunori M
    J Inorg Biochem; 2002 Feb; 88(3-4):353-61. PubMed ID: 11897350
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Intramolecular electron transfer in nitrite reductases.
    Wherland S; Farver O; Pecht I
    Chemphyschem; 2005 May; 6(5):805-12. PubMed ID: 15884062
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electron transfer between azurin and cytochrone c-551 from Pseudomonas aeruginosa.
    Wilson MT; Greenwood C; Brunori M; Antonini E
    Biochem J; 1975 Mar; 145(3):449-57. PubMed ID: 168867
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The effect of pH and temperature on the structure of the active site of azurin from Pseudomonas aeruginosa.
    Adman ET; Canters GW; Hill HA; Kitchen NA
    FEBS Lett; 1982 Jul; 143(2):287-92. PubMed ID: 6811322
    [No Abstract]   [Full Text] [Related]  

  • 69. Purification of Pseudomonas cytochrome oxidase (or nitrite reductase) by immunological methods.
    Silvestrini MC; Citro G; Colosimo A; Chersi A; Zito R; Brunori M
    Anal Biochem; 1983 Mar; 129(2):318-25. PubMed ID: 6303159
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Monomeric Pseudomonas aeruginosa nitrite reductase: preparation, characterization, and kinetic properties.
    Silvestrini MC; Tordi MG; Citro G; Vecchini P; Brunori M
    J Inorg Biochem; 1995 Feb; 57(3):169-81. PubMed ID: 7876836
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Purification of electron-transfer components from Pseudomonas.
    Wharton DC
    Methods Enzymol; 1978; 53():646-61. PubMed ID: 213691
    [No Abstract]   [Full Text] [Related]  

  • 72. Aminoglycoside-resistant mutants of Pseudomonas aeruginosa deficient in cytochrome d, nitrite reductase, and aerobic transport.
    Bryan LE; Kwan S
    Antimicrob Agents Chemother; 1981 Jun; 19(6):958-64. PubMed ID: 6791588
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Heat stabilization dependence on redox state of cytochrome cd1 oxidase from Pseudomonas aeruginosa.
    Mitra S; Donovan JW; Bersohn R
    Biochem Biophys Res Commun; 1981 Jan; 98(1):140-6. PubMed ID: 6260097
    [No Abstract]   [Full Text] [Related]  

  • 74. Extracellular production of azurin from Pseudomonas aeruginosa in the presence of Triton X-100 or Tween 80.
    Unver Y; Yildiz S; Acar M
    Bioprocess Biosyst Eng; 2022 Mar; 45(3):553-561. PubMed ID: 35039942
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization of bacterial cytochrome cd(1)-nitrite reductase as one enzyme responsible for catalysis of nitrosation of secondary amines.
    Calmels S; Ohshima H; Henry Y; Bartsch H
    Carcinogenesis; 1996 Mar; 17(3):533-6. PubMed ID: 8631140
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nitrite reductase activity of Pseudomonas cytochrome oxidase.
    YAMANAKA T; OTA A; OKUNUKI K
    Biochim Biophys Acta; 1960 Nov; 44():397-8. PubMed ID: 13787168
    [No Abstract]   [Full Text] [Related]  

  • 77. Interaction of Pseudomonas cytochrome cd1 with the cytoplasmic membrane.
    Saraste M; Kuronen T
    Biochim Biophys Acta; 1978 Oct; 513(1):117-31. PubMed ID: 102345
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Amino acid composition and N-terminus of Pseudomonas cytochrome oxidase (= Pseudomas aerugenosa nitrite reductase).
    Nagata Y; Yamanaka T; Okunuki K
    Biochim Biophys Acta; 1970 Dec; 221(3):668-71. PubMed ID: 4322550
    [No Abstract]   [Full Text] [Related]  

  • 79. A kinetic study of the reconstitution of azurin from Cu(II) and the apoprotein.
    Marks RH; Miller RD
    Arch Biochem Biophys; 1979 Jun; 195(1):103-11. PubMed ID: 38744
    [No Abstract]   [Full Text] [Related]  

  • 80. Confirmation that multiexponential fluorescence decay behavior of holoazurin originates from conformational heterogeneity.
    Hutnik CM; Szabo AG
    Biochemistry; 1989 May; 28(9):3923-34. PubMed ID: 2502172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.