BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8218732)

  • 1. Biodegradable poly(DL-lactic acid) formulations in a calcitonin delivery system.
    Asano M; Yoshida M; Omichi H; Mashimo T; Okabe K; Yuasa H; Yamanaka H; Morimoto S; Sakakibara H
    Biomaterials; 1993 Aug; 14(10):797-9. PubMed ID: 8218732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo characteristics of low molecular weight copolymers composed of L-lactic acid and various DL-hydroxy acids as biodegradable carriers for drug delivery systems.
    Fukuzaki H; Yoshida M; Asano M; Kumakura M; Mashimo T; Yuasa H; Imai K; Yamanaka H
    Biomaterials; 1990 Aug; 11(6):441-6. PubMed ID: 2207236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustained drug release characteristics of biodegradable composite poly(d,l)lactic acid-poly(l)lactic acid microcapsules containing ciprofloxacin.
    Yu WP; Wong JP; Chang TM
    Artif Cells Blood Substit Immobil Biotechnol; 2000 Jan; 28(1):39-55. PubMed ID: 10676576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of polymer glass transition temperature and molecular weight on drug release from tablets containing poly(DL-lactic acid).
    Omelczuk MO; McGinity JW
    Pharm Res; 1992 Jan; 9(1):26-32. PubMed ID: 1589405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo characteristics of low molecular weight copoly (D,L-lactic acid) formulations with controlled release of LH-RH agonist.
    Asano M; Fukuzaki H; Yoshida M; Kumakura M; Mashimo T; Yuasa H; Imai K; Yamanaka H
    Biomaterials; 1989 Oct; 10(8):569-73. PubMed ID: 2513891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Intravitreal drug delivery by microspheres of biodegradable polymers].
    Moritera T; Ogura Y; Honda Y; Wada R; Hyon SH; Ikada Y
    Nippon Ganka Gakkai Zasshi; 1990 May; 94(5):508-13. PubMed ID: 2220493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single processing step toward injectable sustained-release formulations of Triptorelin based on a novel degradable semi-solid polymer.
    Asmus LR; Kaufmann B; Melander L; Weiss T; Schwach G; Gurny R; Möller M
    Eur J Pharm Biopharm; 2012 Aug; 81(3):591-9. PubMed ID: 22561956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled release of poly-D,L-lactic acid containing bleomycin.
    Nakamura K; Natsugoe S; Kumanohoso T; Aikou T; Shinkawa T; Yamada K; Fukuzaki H
    Anticancer Drugs; 1995 Jun; 6(3):483-7. PubMed ID: 7545481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new vitreal drug delivery system using an implantable biodegradable polymeric device.
    Kimura H; Ogura Y; Hashizoe M; Nishiwaki H; Honda Y; Ikada Y
    Invest Ophthalmol Vis Sci; 1994 May; 35(6):2815-9. PubMed ID: 8188476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled cisplatin delivery system using poly(D,L-lactic acid).
    Ike O; Shimizu Y; Wada R; Hyon SH; Ikada Y
    Biomaterials; 1992; 13(4):230-4. PubMed ID: 1520828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmucosal delivery systems for calcitonin: a review.
    Torres-Lugo M; Peppas NA
    Biomaterials; 2000 Jun; 21(12):1191-6. PubMed ID: 10811300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled release of newer quinolones from biodegradable systems based on poly(lactic acid).
    Andreopoulos AG
    J Biomater Appl; 1995 Oct; 10(2):163-70. PubMed ID: 8618209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro release of new quinolones from biodegradable systems: a comparative study.
    Andreopoulos AG; Korakis T; Dounis E; Anastasiadis A; Tzivelekis P; Kanellakopoulou K
    J Biomater Appl; 1996 Apr; 10(4):338-47. PubMed ID: 8859405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled release of insulin from plasma-irradiated sandwitch device using poly-DL-lactic acid.
    Yamakawa I; Watanabe S; Matsuno Y; Kuzuya M
    Biol Pharm Bull; 1993 Feb; 16(2):182-7. PubMed ID: 8364454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems.
    Alonso MJ; Gupta RK; Min C; Siber GR; Langer R
    Vaccine; 1994 Mar; 12(4):299-306. PubMed ID: 8178550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable polymers for ocular drug delivery.
    Kimura H; Ogura Y
    Ophthalmologica; 2001; 215(3):143-55. PubMed ID: 11340382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled release of cisplatin incorporated into biodegradable poly-d, l-lactic acid.
    Natsugoe S; Kumanohoso T; Tokuda K; Shimada M; Mueller J; Nakamura K; Yamada K; Fukuzaki H; Aikou T
    Anticancer Res; 1997; 17(3C):1957-60. PubMed ID: 9216651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable hollow fibres for the controlled release of drugs.
    Schakenraad JM; Oosterbaan JA; Nieuwenhuis P; Molenaar I; Olijslager J; Potman W; Eenink MJ; Feijen J
    Biomaterials; 1988 Jan; 9(1):116-20. PubMed ID: 3126841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustained drug delivery systems II: Factors affecting release rates from poly(epsilon-caprolactone) and related biodegradable polyesters.
    Pitt CG; Gratzl MM; Jeffcoat AR; Zweidinger R; Schindler A
    J Pharm Sci; 1979 Dec; 68(12):1534-8. PubMed ID: 529046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.